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ABSTRACT
Clustering algorithms have become a popular tool in com-
puter security to analyze the behavior of malware variants,
identify novel malware families, and generate signatures for
antivirus systems. However, the suitability of clustering
algorithms for security-sensitive settings has been recently
questioned by showing that they can be significantly com-
promised if an attacker can exercise some control over the in-
put data. In this paper, we revisit this problem by focusing
on behavioral malware clustering approaches, and investi-
gate whether and to what extent an attacker may be able to
subvert these approaches through a careful injection of sam-
ples with poisoning behavior. To this end, we present a case
study on Malheur, an open-source tool for behavioral mal-
ware clustering. Our experiments not only demonstrate that
this tool is vulnerable to poisoning attacks, but also that it
can be significantly compromised even if the attacker can
only inject a very small percentage of attacks into the input
data. As a remedy, we discuss possible countermeasures and
highlight the need for more secure clustering algorithms.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); G.3 [Probability and Statis-
tics]: Statistical computing; I.5.1 [Models]: Statistical;
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I.5.2 [Design Methodology]: Clustering design and eval-
uation; I.5.3 [Clustering]: Algorithms

General Terms
Security, Clustering.

Keywords
Adversarial Machine Learning; Unsupervised Learning; Clus-
tering; Security Evaluation; Computer Security; Malware
Detection

1. INTRODUCTION
Automated techniques for behavioral clustering of mal-

ware have been found to be effective for the development of
analysis, detection and mitigation strategies against a broad
spectrum of malicious software. Such techniques can signif-
icantly ease the identification of polymorphic instances of
well-known malware as well as novel attack types and infec-
tion strategies, reducing by orders of magnitude the burden
of the analysis task [e.g., 20, 24, 27, 28].

Behavioral clustering is motivated by a key assumption:
albeit malware writers can generate a large number of poly-
morphic variants of the same malware, e.g., using executable
packing and other code obfuscation techniques [12, 15], these
polymorphic variants will eventually perform similar activ-
ities when executed. To expose these behavioral similari-
ties, malware binaries are usually executed in a monitored
sandbox environment, in order to identify malware families
characterized by similar host-level events [e.g., 1, 3, 20, 27]
or network traffic patterns [e.g., 13, 14, 24, 25].

However, regardless the behavioral features being used, all
these proposals suffer from the same vulnerability: cluster-
ing algorithms have not been originally devised to deal with
data from an adversary. As outlined in recent work [4, 9],
this may allow an attacker to devise carefully-crafted attacks



that can significantly compromise the clustering process it-
self, and invalidate subsequent analyses.

In this work, we also show that the effectiveness of cluster-
ing algorithms — in particular, single-linkage clustering —
can be dramatically reduced by a skilled adversary through a
proper, deliberate manipulation of malware samples, in the
context of a more realistic application scenario that those
considered in [4, 9]. To this end, we first review the at-
tacker’s model proposed in [4, 9], as it can also be exploited
as a general threat model for behavioral malware cluster-
ing, and then investigate a worst-case attack against Mal-

heur [28], an open-source malware clustering tool. We emu-
late an attacker who adds specially-crafted poisoning actions
to the original behavior of malware samples, thus leaving in-
tact their original malicious goals. Our experimental results
clearly show that even a small fraction of 3% of poison-
ing samples may completely subvert the clustering process,
leading to poor clustering results. Thus, our case study high-
lights the need for robust malware clustering techniques, ca-
pable of coping with malicious noise. As a consequence, a
safe application of clustering algorithms for malware analy-
sis remains an open research issue. Throughout the paper
we sketch some promising ways of research towards this goal.

Contributions. In summary, the main contribution of this
paper is to extend and adapt the poisoning attacks proposed
in [4, 9] against the single-linkage hierarchical clustering al-
gorithm to target Malheur [28], an open-source tool for be-
havioral malware clustering. In this case, the main difficulty
with respect to previous work relies in constructing real mal-
ware samples that correspond to the desired, optimal feature
vectors found by the optimal attack strategy, while account-
ing for application-specific constraints on the manipulation
of the feature values of each sample. This is a well-known
issue in the field of adversarial machine learning, referred
to as the problem of inverting the feature mapping [7, 17].
To assess the effectiveness of poisoning attacks against be-
havioral malware clustering, we finally report an extensive
set of experiments that highlight the vulnerability of such
approaches to well-crafted attacks, as well as the need for
identifying suitable countermeasures, for which we identify
some interesting ways of research.

Organization. The remainder of this paper is structured
as follows. In Sect. 2, we give an overview of recent work
on behavioral malware clustering. The previously-proposed
framework for the security evaluation of clustering algo-
rithms [4, 9] is discussed in Sect. 3. In Sect. 4, we review
the derivation of (worst-case) poisoning attacks, in which
the attacker has perfect knowledge of the targeted system.
In Sect. 5, we describe Malheur, the malware clustering tool
exploited as a case study to evaluate our poisoning attacks.
The latter are defined as variants of the previously-proposed
poisoning attacks, to deal with the specific feature represen-
tation exploited by Malheur, in Sect. 6, where we also report
the results of our experimental evaluation. Conclusions are
discussed in Sect. 7, along with possible future research di-
rections.

2. MALWARE CLUSTERING
The urgent need for automated analysis of malware natu-

rally comes with the ever-growing number of malicious codes
on the Internet. In recent years, machine learning tech-
niques have received attention in this area, as they enable

improving the automation of malware analysis. One promi-
nent representative are clustering algorithms. These algo-
rithms enable grouping similar malware automatically and
can thereby reduce the manual efforts required for develop-
ing mitigation and detection techniques. Several approaches
for such a clustering have been devised in the last years, most
notably, (a) clustering of network traffic, and (b) clustering
of program behavior.

Clustering of network traffic. Network communication
is a key component of malware and thus several malware
families can be solely characterized by their network traffic.
For example, Gu et al. correlate spatial-temporal relations
in botnet communication using clustering [14]. To this end,
the authors make use of hierarchical clustering on the basis
of q-grams over a so-called “activity log” which describes a
botnet’s network communication in terms of different types
of responses. This approach is then extended to a more gen-
eral concept of C&C communication [13], where the authors
attempt to be agnostic to the protocol used as well as the
concrete hierarchy of the botnet.

In a similar line of research, Perdisci et al. [25] focus on
HTTP-based malware with the objective to automatically
generate network signatures for malware. In particular, they
use single-linkage clustering over three stages, mainly to
reduce computational complexity: first, a “coarse-grained”
clustering is performed; each of the corresponding clusters
is then subdivided into a more “fine-grained” set of clusters;
and, eventually, similar clusters are merged together to avoid
redundant signature generation. An extension by the same
authors [24] focuses more on the scalability of the proposed
approach, in terms of the number of samples that the sys-
tem is able to process in a given amount of time (i.e., the
so-called throughput). The authors utilize an approximate
clustering algorithm for the first stage of their approach.
This not only speeds up the initial stage but also decreases
the need of a merging phase, thus yielding a significant in-
crease of the overall throughput of the system.

Clustering of program behavior. A second strain of
research has considered program behavior of malware for
identifying related samples. Despite polymorphism and ob-
fuscation, variants of the same malware family often show
similar program behavior. Bailey et al. [1] have been the
first to apply clustering algorithms to this information. In
particular, they obtain a single-linkage clustering by com-
puting pairwise distances between sequences of host-level
events. This approach, however, has a quadratic runtime
complexity and therefore quickly reaches its limits in terms
of the possible throughput.

Bayer et al. [3] counter this shortcoming with an approxi-
mate clustering using locality sensitive hashing (LSH). This
makes it possible to scale the analysis to several thousand
malware samples. The behavioral analysis is powered by
the malware analysis system Anubis [18]. Closely related
to this approach is the tool Malheur [28], which we use in
our case study to demonstrate the effectiveness of our at-
tacks. Malheur makes use of program behavior monitored
by CWSandbox in MIST Format [31, 35] and is described
in more detail in Sect. 5.

More recently, several extensions have been proposed for
improving behavioral clustering of malware in practice. For
example, Jang et al. [20] apply feature hashing for clustering
large sets of malware binaries, Perdisci & U [26] propose an
automatic procedure for calibrating clustering algorithms,



and Hu & Shi [16] combine behavioral clustering with static
code analysis.

Although each of the presented approaches provides ad-
vantages for keeping abreast of malware development, all ap-
proaches employ standard clustering algorithms which have
not been originally designed to explicitly cope with malicious
noise. Consequently, the attacks proposed in this paper can
be potentially adapted to several of these approaches with
minor modifications.

3. SECURITY EVALUATION OF
CLUSTERING ALGORITHMS

In this section we briefly review the framework proposed
by Biggio et al. [4, 9] for the security evaluation of unsuper-
vised learning algorithms (including clustering) against ad-
versarial attacks. Similarly to previous work on the security
evaluation of supervised learning algorithms [2, 7, 17], this
framework relies on a threat model that consists of defin-
ing the adversary’s goal, knowledge of the attacked system,
and capability of manipulating the input data, in order to
formalize an optimal attack strategy.

In the sequel, we describe this framework using the same
notation defined in Biggio et al. [4, 9]. We refer to any clus-
tering algorithm as a function f that maps a given dataset
D = {xi}ni=1 to a clustering result C = f(D), without spec-
ifying the structure of C at this stage, as it depends on the
given clustering algorithm.

3.1 Adversary’s Goal
The adversary’s goal can be defined in terms of the de-

sired security violation, and of the so-called attack speci-
ficity [2, 4, 7, 9, 17]. A security violation may compromise
the system integrity, its availability, or the privacy of its
users. Integrity violations, in general, aim to perform some
malicious activity without compromising the normal system
operation. In the unsupervised learning setting, they have
thus been defined as attacks aimed at changing the cluster-
ing of a given set of samples, without significantly altering
the clustering result on the rest of the data. Availability
violations aim to compromise system operation, causing a
Denial of Service (DoS). Therefore, in the unsupervised set-
ting, availability attacks have been defined as attacks that
aim to subvert the clustering process by altering its result as
much as possible. By contrast, privacy violations are defined
as attacks that may allow the attacker to gather information
about the system’s users by reverse-engineering the cluster-
ing process. The attack specificity can be targeted or indis-
criminate, depending on whether the attack aims to modify
the clustering output only on a specific subset of samples,
or indiscriminately on any sample.

3.2 Adversary’s Knowledge
In order to achieve her goal, the adversary may exploit in-

formation at different abstraction levels about the targeted
system. We summarize them in the following. First, the
attacker may know the whole dataset D, a subset of it, or
more realistically, only a surrogate dataset S, that might
be obtained from the same source of D, e.g., publicly avail-
able malware blacklists. Second, the adversary might be
aware of, and reproduce, the extraction process of the whole
feature set, or a portion of it. Indeed, when it comes to
attacking open-source tools such as Malheur, the adversary

clearly has full knowledge of the feature set. Finally, the ad-
versary might be aware of the targeted clustering algorithm,
as well as of its initialization parameters (if any). In the case
of Malheur, this translates into knowing the user-specified
configuration of the tool.

Perfect knowledge. The worst-case scenario in which the
attacker has full knowledge of the targeted system is usually
referred to as perfect knowledge [2, 5–8, 10, 17, 22]. In our
case, this amounts to knowing the data, the feature space,
the clustering algorithm and its initialization (if any).

3.3 Adversary’s Capability
The adversary’s capability specifies how and to what ex-

tent the adversary can manipulate the input data to alter the
clustering process. In several cases it is realistic to consider
that the attacker can add a maximum number of (poten-
tially manipulated) samples to the dataset D, without af-
fecting the rest of the data. For instance, anyone, including
a skilled adversary, can submit novel malware samples to
publicly-available malware-analysis services such as Virus-
Total [33] and Anubis [18], which can in turn be used as
sources to collect malware by registered users. If malware
is collected from them, and clustered afterwards, the adver-
sary may actually control a (small) percentage of the input
data given to the clustering algorithm.

An additional constraint may be given in terms of how
malware samples can be manipulated. In fact, to preserve
its malicious functionality, malware code may not be manip-
ulated in an unconstrained manner. Such a constraint can
be often encoded by a suitable distance measure between the
original, non-manipulated attack samples and the manipu-
lated ones, as in [2, 7, 17, 23]. However, this strictly depends
on the specific application and feature representation.

3.4 Attack Strategy
Based on the presented threat model, consisting of as-

sumptions on the adversary’s goal, knowledge and capabili-
ties, we can finally define the optimal strategy for attacking
a clustering algorithm as:

maximize Eθ∼µ[g(A′; θ)]
s.t. A′ ∈ Ω(A) .

(1)

In this formulation, as in [4, 9], the adversary’s knowledge
is characterized by a parameter vector θ, whose elements
embed information about the input data D, the clustering
algorithm f , and its parameters (as discussed in Sect. 3.2).
The uncertainty of the adversary about the elements of θ
is captured by a probability distribution µ defined over the
set of all possible configurations θ. Moreover, the objective
function g(A′; θ) ∈ R measures the extent to which the ad-
versary’s goal is fulfilled by the set of attack samples A′ used
to taint the initial data D, given the knowledge θ. In the
above formulation, we consider the maximization of the ex-
pected value of this function with respect to θ sampled from
the distribution µ, denoted as Eθ∼µ[·]. Finally, the adver-
sary’s capability is encoded by the set Ω(A), which denotes
the possible manipulations that the attacker can make on a
given a set of attack samples A before adding them to the
original setD. The setA of initial attacks can be empty, e.g.,
if the attack samples can be generated from scratch without
preserving or exhibiting any malicious functionality.

It is finally worth remarking that the above optimization
problem is formulated in terms of the considered feature



representation, as many other adversarial machine learning
problems [5–7, 9, 17]. In practice, after solving this prob-
lem, we are given a set of optimal feature vectors for which
we have to subsequently build a set of corresponding real
samples to practically execute the attack. This is clearly an
application-specific problem that may not be trivial to solve
depending on the given feature representation. However,
it can be mitigated by incorporating specific constraints on
the manipulation of the feature values of the attack samples,
while defining the set Ω, as we will see in the next sections.

4. POISONING ATTACKS WITH
PERFECT KNOWLEDGE

Following the framework described in the previous sec-
tion, poisoning attacks are defined as indiscriminate avail-
ability violations (i.e., DoS attacks) in which the attacker
aims to maximally alter the clustering result on any of the
input samples through the injection of well-crafted poison-
ing samples. In the case of malware clustering, this amounts
to adding carefully-designed malware samples to the input
data to avoid the correct clustering of malware exhibiting
similar behavior and, thus, the correct identification of both
known and novel malware families.

As in previous work [4, 9], we are interested in analyzing
the worst possible performance degradation that the sys-
tem may incur under this attack. We therefore assume that
the attacker has perfect knowledge of the targeted system,
as described in Section 3.2. Accordingly, the expectation in
Eq. (1) vanishes and the objective simply becomes g(A′; θ0),
being θ0 the set of parameters representing perfect knowl-
edge of the system. Further, for this kind of attack, the
objective function g(A′; θ0) can be defined as a distance
function between the clustering result C obtained from the
untainted data D and the clustering result C′ = fD(D′) re-
stricted to the same data (through a projection operator
fD), but obtained from the tainted data D′ = D ∪ A′ (i.e.,
including the set A′ of attack samples). The objective can
be thus written as g(A′; θ0) = dc(C, fD(D∪A′)), where dc is
a suitable distance function between clusterings. Note that
poisoning samples are excluded from the computation of the
objective function since the attacker’s goal is to maximally
subvert the clustering output on the untainted input data,
and not on the poisoning samples (which may otherwise bias
the evaluation of the attack’s impact).

If the clustering algorithm f assigns each sample to a clus-
ter, the clustering result C can be represented as a matrix
Y ∈ {0, 1}n×k (k being the number of clusters found), where
each (i, j)th component equals 1 if the ith sample is assigned
to the jth cluster, and 0 otherwise. Within this setting, a
possible distance function between clusterings amounts to
counting how many pairs of samples have been clustered
together in one clustering and not in the other, or viceversa:

dc(Y, Y
′) = ‖YY> − Y

′
Y
′>‖F , (2)

where ‖ · ‖F is the Frobenius norm, and each element of

the matrix YY> ∈ {0, 1}n×n (and, similarly, of Y′Y′
>

) repre-
sents whether the corresponding pair of samples has been
clustered together (1) or not (0).

As mentioned earlier, to poison the clustering process the
adversary can add a set A′ of attack samples to the input
data D. We bound the adversary’s capability here by limit-
ing the maximum number of injected poisoning samples to

m, i.e. |A′| ≤ m. Additional constraints on the set of attack
samples can be identified depending on the given feature
representation, to facilitate the fabrication of real samples
exhibiting the desired feature values. In general, we denote
the set of constraints to be fulfilled by the poisoning at-
tack as A′ ∈ Ωp. To give a concrete example, consider that
Malheur can be configured to extract binary feature vectors
that are subsequently normalized to have unitary `2-norm.
In this case, the set of constrained attack samples can be
expressed as:

Ωp =
{
{a′i}mi=1 : a′i ∈ {0, 1/||a′i||2}d for i = 1, · · · ,m

}
,

(3)
where d is the number of features, and || · ||2 denotes the
`2-norm of a vector.

In general, the optimal attack strategy for poisoning at-
tacks with perfect knowledge can be therefore derived from
Eq. (1) and written independently from the specific cluster-
ing algorithm as:

maximize dc(C, fD(D ∪A′))
s.t. A′ ∈ Ωp .

(4)

Unfortunately, this problem can not be solved analyti-
cally only if the clustering output is analytically predictable,
which is not usually the case. We have thus to resort to suit-
able heuristics depending on the considered clustering algo-
rithm to devise effective attacks. In the next section we in-
vestigate heuristics to solve the above problem [see 4, 9] and
poison the single-linkage hierarchical clustering algorithm,
as we will exploit them in our case study against Malheur.

4.1 Poisoning single-linkage hierarchical
clustering

Before describing the heuristics for poisoning the single-
linkage clustering algorithm, it is worth pointing out that
this algorithm, as any other variant of hierarchical cluster-
ing, outputs a hierarchy of clusterings [19]. Such a hierarchy
is constructed by initially considering each data point as a
single cluster, and iteratively merging the closest clusters
together, until a single cluster containing all data points is
obtained. Clusters are merged according to a given distance
measure, also referred to as linkage criterion. In the single-
linkage variant, the distance between any two clusters (Ci,
Cj) is defined as the minimum Euclidean distance between
all possible pairs of samples in Ci × Cj .

To obtain a given data partitioning into clusters, a suit-
able cutoff distance has to be chosen. This determines the
maximum intra-cluster distance for each cluster, and, thus,
indirectly, the total number of clusters. We follow the ap-
proach of Biggio et al. [4, 9] and select the cutoff distance
that achieves the minimum distance between the clustering
obtained in the absence of attack C and the one obtained in
the presence of poisoning, i.e., min dc(C, fD(D ∪ A′)). The
reason is that this is the worst-case cutoff criterion for the
attack, which is thus expected to work potentially even bet-
ter under less pessimistic choices of the cutoff distance.

Given a suitable criterion for selecting the cutoff distance,
it is possible to model the clustering output as a binary
matrix Y ∈ {0, 1}n×k indicating the sample-to-cluster as-
signments, and thus use the distance measure dc defined in
Eq. (2) as the objective function in Problem (4). This prob-
lem has then been solved by means of specialized search
heuristics specifically tailored to the considered clustering



algorithm. In particular, we have considered greedy opti-
mization approaches in which the attacker aims to maxi-
mize the objective function by adding one attack sample at
a time, i.e., |A′| = m = 1. We have found that the objective
function is often maximized when the attack point is added
in between clusters that are sufficiently close to each other.
The reason is that such an attack tends to decrease the dis-
tance between the two clusters, thus causing the algorithm
to potentially merge them into a single cluster.

Bridge-based attacks. Based on this observation, we have
thus devised a family of attacks that aim to iteratively bridge
the closest clusters. Let us assume that at each iteration
we are given a set of k clusters, and we have to select the
best attack point to be added to the current dataset. Each
bridge-based attack generates the same set of k−1 candidate
attack points, by considering the k−1 links between pairs of
points that have been cut to separate the current clustering
from the top of the hierarchy, i.e., the k−1 shortest connec-
tions between clusters. Each candidate attack point is then
computed as the midpoint between the points in each of the
k − 1 identified pairs, as conceptually represented in Fig. 1.
The difference among the bridge-based attacks relies only on
how the best attack point is selected at each iteration.

Bridge (Best). This strategy adds each candidate attack
point to the current dataset, one at a time, re-runs the
clustering algorithm on such data, and chooses the attack
point that maximally increases the objective function. This
is clearly a computationally-intensive procedure, especially
for large datasets.

Bridge (Hard). This strategy aims to improve efficiency
by avoiding us to re-run the clustering k times at each attack
iteration. The underlying idea is to approximate the cluster-
ing result Y′ on the current dataset including the considered
candidate attack point, without re-computing the cluster-
ing explicitly. To this end, the attack point is assumed to
effectively merge the two adjacent clusters. For each point
belonging to one of the two adjacent clusters, we thus set
to 1 (0) the value of Y′ corresponding to the first (second)
cluster. This amounts to considering hard clustering assign-
ments. Once the estimated Y′ is computed, we evaluate the
objective function using the estimated Y′, and select the at-
tack point that maximizes its value.

Bridge (Soft). This is a variant of the latter approach that
estimates Y′ using soft clustering assignments instead of hard
ones. In particular, the (i, k)th element of Y′ is estimated
as the posterior probability that the ith sample belongs to
the kth cluster, using a Gaussian Kernel Density Estimator
(KDE) with bandwidth parameter h. When h is too small,
the posterior estimates tend to the value of 1/k, i.e., each
point is assigned to any cluster with the same probability.
When h is too high, instead, they tend to hard assignments.
As a rule of thumb, the value of h should be thus comparable
to the average distance between all possible pairs of samples
in the dataset. The rationale of this strategy is to try finding
connections that can potentially merge large clusters with
more than one attack sample, to mitigate the limitation of
our greedy approach.

5. A CASE STUDY: MALHEUR
To illustrate the effect of the proposed poisoning attacks

in a practical setting, we conduct a case study with the

open-source tool Malheur.1 The tool implements techniques
for clustering and classification of program behavior and has
been applied in different settings for analyzing malware in
the wild [11, 16, 28]. The analysis realized by Malheur builds
on four basic steps.

1. MIST Representation. As the first step, the behavior
of malware binary is monitored in a sandbox environ-
ment and stored as MIST reports [31]. In this format,
the behavior of a program is described as a sequence
of events, where individual execution flows of threads
and processes are grouped in a single, sequential re-
port. Each event encodes one monitored system call
and its arguments, where the arguments are arranged
in different levels of blocks, reflecting behavior with
different degree of granularity. Depending on the con-
figuration of Malheur, the monitored behavior can be
analyzed at these different MIST levels [28].

2. Embedding. As the next step, Malheur embeds the
monitored behavior in a high-dimensional vector space,
where each dimension is associated with a short se-
quence of q events—a so called q-gram. If a q-gram
occurs in the monitored events of a program, the re-
spective dimension is set to 1 in its vector, otherwise
it is set to 0. To enable a fair comparison of pro-
grams that strongly differ in the amount of observed
events, each vector x is additionally normalized, such
that ||x||2 = 1, namely, projecting the vectors onto a
hypersphere of unit radius in the vector space.

3. Clustering. For partitioning the embedded behavior
into groups, Malheur implements an efficient variant of
hierarchical clustering that supports single-linkage and
complete-linkage hierarchical clustering. To alleviate
the quadratic run-time complexity of these clustering
algorithms, the tool can approximate the underlying
data by limiting the analysis to a small subset of proto-
types. For our case study, we disable this functionality
and instead apply Malheur without prototype-based
approximation.

4. Classification. Finally, Malheur supports assigning un-
known behavior to previously discovered clusters. This
assignment is realized using a nearest-neighbor classi-
fication, where a new vector is assigned to a nearby
cluster if it appears within a certain distance to its
members. This nearest-neighbor classification can be
approximated by searching for nearest neighbors in a
set of prototypes instead of all cluster members. We
again disable this functionality and operate on the full
data for our case study.

Each of the four steps supports different parameters that
can be adapted in the configuration of Malheur. For our case
study, we start with a basic setup by using MIST level 1,
setting the q-gram length to 1 and especially considering
single-linkage clustering by disabling the prototype-based
approximation used by Malheur. The use of the latter would
indeed imply a sort of complete-linkage pre-processing clus-
tering step, which would in turn require us to significantly
revisit the derivation of a proper poisoning attack. We there-
fore leave this issue to future work. Finally, although this

1http://www.mlsec.org/malheur
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Figure 1: Bridge-based attacks against single-linkage clustering. The candidate attack samples connecting the k − 1 closest
clusters are highlighted as red hexagons.

setup slightly simplifies our attack, previous work has al-
ready shown that creating artificial q-grams of system calls,
and similarly the use of different MIST levels, is not a chal-
lenge for an attacker [29, 30, 34], especially if she has full
control over the behavior, as in the case of malware.

6. EXPERIMENTAL EVALUATION
In this section we apply the aforementioned evaluation

framework to a concrete case study: we evaluate the worst-
case effects of the poisoning attacks described in Section
4.1 using real malware samples, and against a real-world
tool for behavioral malware clustering. In Section 6.1 we
present the datasets employed for our investigation. Then,
in Section 6.2 we provide all relevant details about the ex-
perimental setup and evaluation metrics. In Section 6.3 we
summarize the main attack strategies implemented for the
evaluation, including the modifications to the derivation of
poisoning attacks that allow us to deal with the specific fea-
ture representation exploited by Malheur. Finally, in Sec-
tion 6.4 we present and discuss our experimental results.

6.1 Datasets
For our experiments and evaluation we make use of two

different datasets: first, the data that was originally consid-
ered by Rieck et al. in [28], and second, a dataset consisting
of more recent malware samples collected in 2013.

Malheur data. This dataset consists of a selection of 3131
malware samples collected in a period of 3 years up to Au-
gust 2009, and made publicly available in the same year.2

It comprises a reference dataset that was used to calibrate
the clustering algorithm in [28], and 7 application datasets
for evaluating and testing their approach. The latter rep-
resent malware found on the Internet within 24 hours on 7
consecutive days. For our experiments we stick to a similar
setup in order to ensure the comparability with the original
approach and optimally show the practicality of our attack.

Recent Malware data. In addition to the data used for
the Malheur project, we gathered malware samples from
most prominent families in 2013. Similarly to [28] we rely
on the popular antivirus scanner by Kaspersky Lab for this
ranking and labeling of the malware samples. We chose 5 of
the top 10 detections according to a recent threat report [21],

2http://pi1.informatik.uni-mannheim.de/malheur/

Dataset Number of samples

DangerousObject.Multi.Generic 129
Trojan.Win32.Generic 120
Virus.Win32.Sality.gen 112
Trojan.Win32.Starter.lgb 150
Virus.Win32.Nimnul.a 146

Total 657

Table 1: Summary of the malware families collected in 2013
for the Recent Malware data.

and selected those families for which we were able to gather
more than 100 but at most 150 samples. A summary of the
exact numbers is given in Table 1.

When running Malheur on the aforementioned datasets
using the MIST-level-1 binary embedding discussed in Sect. 5,
we have respectively found 85 and 78 distinct feature values
(i.e., 1-grams).

6.2 Experimental Setup
To fairly evaluate the clustering process, we randomly

split each dataset into two disjunct portions of equal size,
namely, T and S. The T portion is used to calibrate the
clustering algorithm, and, in particular, to estimate the cut-
off distance (see Sect. 4.1). As suggested in [28], we select
as the optimal cutoff distance the one that maximizes the
F-measure (see below for its definition). The S split is then
used to evaluate the calibrated clustering on unseen mal-
ware against an increasing percentage of poisoning attacks.
This procedure is repeated five times and results are aver-
aged over these repetitions. In our experiments, the value of
the cutoff distance has been found to be 0.49 on the Malheur
dataset and 0.63 on the Recent Malware dataset, on average,
with a negligible standard deviation in both cases. Although
in these experiments we assume that the cutoff distance is
known to the attacker, more realistically an attacker can try
estimating it from the data in a more conservative manner
(i.e., essentially underestimating its real value), eventually
poisoning the clustering result at the expense of using more
poisoning samples. Clustering results are evaluated accord-
ing to the three measures given below.
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x1

x2 a

Figure 2: Computation of a bridge-based attack against
single-linkage clustering, using the feature representation of
Malheur, i.e., a binary embedding with points additionally
projected onto a unit hypersphere (i.e., with unit `2 norm).
This example considers a simple two-dimensional feature set,
where we highlighted the only three admissible points, i.e.,
the samples x1 = (0, 1) and x2 = (1, 0), and their ideal
bridging point a = (1/

√
2, 1/
√

2). Besides this simple case,
the creation of effective bridge-based attacks in this space
is generally much more challenging than that considered in
our previous work [4, 9], due to the restrictions imposed by
the given feature representation.

1. The objective function in Eq. (4), with dc given by
Eq. (2), that measures the distance of the current clus-
tering from that obtained in absence of poisoning.

2. The number of clusters, that helps us to gain a better
understanding of how the attacks taint the clustering
process. In particular, since the considered poisoning
attacks are expected to “bridge” clusters, the number
of clusters should decrease as the attack progresses.

3. The F-measure [28, 32], defined as the harmonic mean
between precision (π) and recall (ρ), i.e., 2 πρ

π+ρ
. The

latter are respectively computed as π = 1
n

∑
j maxi cij ,

and ρ = 1
n

∑
i maxj cij , where cij is the number of

malware samples belonging to the i-th family present
in the j-th cluster [28]. Precision reflects how well in-
dividual clusters agree with malware families, whereas
recall measures to which extent malware families are
scattered across clusters. Both measures provide com-
plementary information about the quality of clustering
results, summarized by the F-measure.

6.3 Attack Strategies
In this section we explain how we generate the poisoning

samples to attack Malheur. First, as Malheur is configured
with binary embedding and `2 normalization in our case (see
Sect. 5), the feature vectors of poisoning samples have to ful-
fill the constraints given by the set Ωp in Eq. (3). Besides
these constraints, another fundamental pre-requisite that we
impose is that poisoning points have to represent realistic
malware samples. The reason is that a sample that does
not exhibit any malicious or intrusive functionality may not
be included into the set of collected malware to cluster, and
the attack would be trivially defeated.3 Therefore, we gen-
erate every poisoning sample by first selecting a malware

3Note however that the main goal of poisoning samples is
not to preserve the malicious functionality of the embedded
malware code, which is required here only to avoid having
such samples discarded by a simple preliminary antivirus
analysis. Instead, their primary goal is to subvert the clus-
tering output on the rest of the data, in order to produce
a less effective characterization of malware families. This

sample from the given S split, and then manipulating its
features by only increasing their value. Note that the value
of a feature can only be increased from 0 to 1/||a||2, being
||a||2 the `2-norm of the attack sample. We thus refer in the
following to this kind of manipulation as feature addition,
for short. This manipulation indeed preserves the malicious
functionality of the initially-selected malware, as it does not
compromise the set of instructions required to execute the
original malicious code. Moreover, before adding any candi-
date poisoning point to the data, we verify whether another
point with the same feature values is already present. If this
is the case, we discard the current sample and choose the
next best candidate attack point. This allows us to discard
duplicate attack points, as their presence may worsen the
attack progress.

An important consequence of the particular embedding
used by Malheur is that it affects the way we compute the
bridge between any two points to create our candidate attack
samples. This is a rather important distinction with respect
to our previous work in [4, 9]. In fact, the midpoint in
this case can not be computed as the average of the two
neighboring points, as it is instead possible, for instance,
when real-valued features are used. However, the point that
is as equidistant as possible from each of the two neighboring
points can be found by cloning the neighboring point with
the smaller norm first, and then starting adding features to
it that are not null in the other neighboring point, until the
candidate attack point is as equidistant as possible from the
two points. A simple two-dimensional example is given in
Fig. 2. The only drawback of this procedure is that the
candidate attack point may be sometimes farther from the
two neighboring points than they are with respect to each
other. In these cases, the attack may not be effective, as it
may not effectively bridge the two neighboring clusters.

In these experiments we consider six distinct poisoning at-
tack strategies. In addition to the three bridge-based attacks
defined in Sect. 4.1, we consider Random and Random (Best)
as in [9], and a variant of our bridge-based attacks named
F-measure (Best). Random generates any attack point by
cloning a randomly-selected malware from the available set
S, and adding to it a random number of features. Ran-
dom (Best) works similarly, with the difference that not one
but k − 1 attack points are selected at random, being k
the actual number of clusters at any given attack iteration.
Then, the objective function is evaluated for each candidate
point by re-running the clustering algorithm, and the best
attack point is chosen. F-measure (Best) works as Bridge
(Best), but chooses the best candidate attack point as the
one that minimizes the F-measure instead of maximizing the
objective function dc(Y, Y

′). As Random (Best) and Bridge
(Best), this strategy also requires evaluating the clustering
result k−1 times to determine the best attack at each itera-
tion, while the other strategies are computationally lighter.
As for Bridge (Soft), we set the kernel bandwidth h as the
average distance between each possible pair of samples in the
data, which yielded h ≈ 0.2 in each run. We finally point
out that, if more than one candidate attack point exhibit
the same value of the desired function (either the objective
function or the F-measure, depending on the attack strat-

may indeed not only lead to lower malware detection rates
or higher false alarm rates, but it also makes more difficult
to identify the proper countermeasures or removal tools in
case of infection.



egy), we select the one that produces the smaller number of
clusters. If the tie persists, we break it at random.

6.4 Results
Results for the Malheur and the Recent Malware datasets

are presented in Fig. 3. For each dataset, we show how
the value of the objective function, the number of clusters,
and the F-measure change for an increasing percentage of
injected poisoning samples. We observe a similar behavior of
these metrics for both datasets, which is summarized below
in two points.

1. Simply injecting random points does not allow one to
significantly worsen the quality of the resulting clus-
tering. We can in fact observe that, for the Random
attack, neither the value of the objective function nor
the F-measure are affected at all. The reason is that
each of the randomly-generated attack points is too
far from the other clusters and it is thus clustered as a
singleton, without affecting the clustering result on the
rest of the samples. Random (Best) performs slightly
better, as it clearly makes k− 1 attempts at each iter-
ation to find a better attack point, instead of one.

2. Maximizing the considered objective function actually
allows us to reduce the number of clusters, and, thus,
to compromise the quality of the resulting clustering,
despite it does not incorporate any knowledge of the
problem domain, of the clustering algorithm, and of
the features used. Furthermore, looking at Fig. 3,
we can observe that the bridge-based strategies that
maximize the objective function achieve similar per-
formances to F-measure (Best), which instead mini-
mizes the F-measure. Whereas the objective function
is general, the F-measure takes into account the ground
truth of the problem. We can therefore reasonably ar-
gue that the proposed objective function and the con-
sequent attack strategies can be successfully employed
to attack also systems different from Malheur.

Some further comments can be made separately for the
two data sets. What appears evident from the results on the
Malheur dataset is that injecting an even small percentage of
poisoning points reduces significantly the number of clusters.
Bridge (Best) and F-measure (Best) are able to reduce the
number of cluster from an initial value of 40 to a value of 5
with only the 2% of injected samples. If we further increase
such percentage up to 5% a single, large cluster is created,
where all the initial ones are merged. Bridge (Soft) and
Bridge (Hard) appear to be a bit less effective since they
require a slightly higher percentage of injected samples to
achieve similar results. Nevertheless, it is worth pointing out
that, from a computational standpoint, both these strategies
are significantly less expensive than the Best strategies.

On the Recent Malware dataset the considered attacks ap-
pear to be less effective. In particular, the bridge-based at-
tacks here are not able to merge all the clusters into a unique
cluster. At some point, instead, it happens that the strate-
gies are no longer able to inflict any damage to the current
clustering. The reason is that the candidate bridge points in
this case are selected too far from their corresponding neigh-
boring points, and the former are thus clustered apart in-
stead of successfully merging the desired clusters. We argue
that this may be somehow due to the smaller number of fea-
tures found in this dataset, as this factor limits the number

of manipulations that the attacker can make to find a suit-
able attack point. This may be an interesting starting point
for future work to understand how to improve robustness
of clustering algorithms to poisoning attacks by restricting
the feature set and the number of potential manipulation
the attacker can make on the attack samples. Nevertheless,
one should keep in mind that, in this case, the objective
function reaches anyway the value of 250 for Bridge (Best),
which still means that 250 pair of samples out of 329 sam-
ples have changed their clustering assignment with respect
to the clustering in the absence of poisoning.

7. CONCLUSIONS AND FUTURE WORK
A widespread approach for coping with the plethora of

novel malware are clustering algorithms from the area of
machine learning. While these algorithms can help group-
ing similar malware samples automatically, they have not
been originally designed to operate in an adversarial set-
ting. Our work shows that, by leveraging on vulnerabilities
of clustering algorithms, an attacker can significantly im-
pact the performance of malware clustering. In our evalua-
tion, only a small fraction of poisoning samples is necessary
to largely destroy the recovery of families in a dataset of
real malware. In particular, in this work we have consid-
ered Malheur, i.e., a popular malware clustering tool. We
have modified previously-proposed poisoning attacks to cope
with its specific feature representation, and to incorporate
the corresponding application-specific constraints in the cre-
ation of real, poisoning malware samples. Although we have
focused on a particular setup of this tool, we argue that at-
tacks to other setups and clustering systems should not be
considered a major challenge for a sophisticated attacker.
Creating behavioral features artificially may be more or less
difficult depending on the underlying sandbox environment,
yet the exploited vulnerability resides in the clustering algo-
rithms and thus can hardly be fixed by changing the feature
representation. As a result, our work casts serious doubt
about the security of some clustering algorithms in mal-
ware analysis systems, and there may be considerable need
for novel algorithms that are more robust against poisoning
and malicious noise.

Future extensions of this work may include: investigation
of attacks in which the adversary has only limited knowl-
edge of the system, i.e., attacks in which the input data is
not known to the attacker, who may realistically only collect
surrogate data from the same sources; development of poi-
soning attacks that may target a larger family of clustering
algorithms (instead of considering only specialized heuris-
tics); and development of appropriate countermeasures to
improve security of clustering algorithms against adversar-
ial threats and well-crafted attacks.

It is also worth remarking here that poisoning attacks
are not the only kind of attack that may be incurred by
a clustering-based system operating in an adversarial set-
ting; e.g., if some of the clusters are used to characterize
the behavior of legitimate users or software, an attacker
may aim to manipulate the malware behavior in order to
mimic the legitimate samples, without significantly altering
the clustering output on the rest of the data. This attack has
been referred to as obfuscation attack in [9]. We refer the
reader to the same work for a detailed taxonomy of poten-
tial attacks against clustering. However, the implementation
of such attacks for more realistic application scenarios and
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Figure 3: Results for the Malheur dataset (left column) and the Recent Malware dataset (right column).

specific feature representations remains a non-trivial open
issue, which should be addressed as done in this paper for
poisoning attacks and behavioral malware clustering.
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