
Comprehensive Analysis and Detection of
Flash-based Malware

Christian Wressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck

Institute of System Security, TU Braunschweig, Germany

Abstract. Adobe Flash is a popular platform for providing dynamic
and multimedia content on web pages. Despite being declared dead for
years, Flash is still deployed on millions of devices. Unfortunately, the
Adobe Flash Player increasingly suffers from vulnerabilities, and attacks
using Flash-based malware regularly put users at risk of being remotely
attacked—most prominently highlighted by numerous exploits made pub-
lic during the past months. As a remedy, we present Gordon, a method
for the comprehensive analysis and detection of Flash-based malware. By
analyzing Flash animations at different levels during the interpreter’s
loading and execution process, our method is able to spot attacks against
the Flash Player as well as malicious functionality embedded in Action-
Script code. To achieve this goal, Gordon combines a structural analysis
of the container format with guided execution of the contained code, a
novel analysis strategy that manipulates the control flow to maximize the
coverage of indicative code regions. In an empirical evaluation with 26,600
Flash samples collected over 12 consecutive weeks, Gordon significantly
outperforms related approaches when applied to samples shortly after
their first occurrence in the wild, demonstrating its ability to provide
timely protection for end users.

Keywords: Adobe Flash, Malware, Classification

1 Introduction

Adobe Flash is a widespread platform for providing multimedia content on web
pages—despite being declared dead for years and the recent standardization of
HTML5. According to Adobe, the Flash Player is still deployed on over 500
million devices across different hardware platforms, covering a large fraction of
all desktop systems [42]. Furthermore, a significant number of web sites employs
Flash for advertising, video streaming and gaming, such that every fourth web
site in the top 1,000 Alexa ranking still makes use of Flash-based content [22].

Unfortunately, the implementation of Flash is continuously suffering from
security problems. During the last ten years over 690 different vulnerabilities
have been discovered in the Adobe Flash Player [32]. In the year 2015 alone,
314 new vulnerabilities have been made public, 268 of which enable remote code
execution and require a user to merely visit a web page to be infected. This
growing attack surface provides a perfect ground for miscreants and has lead to
a large variety of Flash-based malware in the wild.

Three factors render the Flash platform particularly attractive for attackers:
First, the large number of vulnerabilities considerably increases the chances for
compromising a wide range of systems. Second, the ability to execute ActionScript
code as part of an attack allows to probe the target environment and carry out
sophisticated exploit strategies. Finally, the Flash platform provides several means
for obstructing the analysis of attacks—most notably the capability to execute
downloaded or dynamically assembled code. As a result of such obfuscation, the
analysis of Flash-based attacks is difficult and time-consuming. Often, signatures
for virus scanners are only available with notable delay such that end users
remain unprotected for a considerable period of time.

In this paper, we present Gordon, a method for the automatic analysis and de-
tection of Flash-based malware. Our method combines a structural analysis of the
Flash container format with guided execution of ActionScript code, a lightweight
and pragmatic form of multi-path exploration. While related approaches orient
analysis to normal execution [27, 44, 48] or external triggers [6, 14, 30], Gordon
actively guides the analyzer towards interesting code regions to maximize the
coverage thereof. This equips us with a comprehensive view on a sample, including
downloaded and dynamically assembled code. By additionally inspecting the
container format, we are able to construct a detection method capable of spotting
malicious ActionScript code as well as exploits targeting the Flash Player directly.

To cope with the large diversity of Flash files in practice, Gordon implements
support for all versions of Flash animations, including all versions of ActionScript
code. To the best of our knowledge, we are the first to provide a generic method for
the analysis and detection of Flash-based malware that enables a comprehensive
view on the behavior and structure of a Flash animation across all versions. The
efficacy of Gordon in practice is demonstrated in an evaluation with 26,600
Flash samples collected over a time of 12 consecutive weeks. Gordon detects
90% of the malicious samples shortly after their appearance in the wild with
a false-positive rate of at most 0.1%. Consequently, our method provides an
excellent starting point for fending off Flash-based malware more efficiently.

In summary we make the following contributions:

– Guided code-execution. We propose a lightweight and pragmatic approach
for exploring ActionScript code in Flash-based malware that guides analysis
towards large or otherwise characteristic code regions automatically.

– Comprehensive analysis of Flash. With the combination of a structural
analysis of Flash containers and a guided execution of embedded code we
provide a fine-grained view on samples across all versions of ActionScript
code and Flash.

– Effective detection of Flash-based attacks. Based on this analysis, we
develop a detection method that accurately identifies Flash-based exploits
and malware shortly after their occurrence, providing a good starting point
to bootstrap signature-based approaches.

The rest of the paper is structured as follows: In Section 2 we introduce
Gordon, our method for the analysis and detection of Flash-based malware,
followed by a detailed description of the employed structural analysis in Section 3,

2

our guided code-execution in Section 4 and Gordon’s detector in Section 5. Our
evaluation is presented in Section 6. We discuss limitations and related work in
Section 7 and Section 8, respectively. Section 9 concludes the paper.

Flash Animation
 (*.swf)

SWF version 10.3

DoABC benign

malicious

R1 354: pushString STR.01
R1 356: pushString STR.01
R1 358: add STR.01 + STR.01
R1 360: pushString STR.03
R1 362: add STR.02 + STR.03
R1 364: callProperty [ns:flash.display]
R1 > getDefinitionByName 1
R1 > Looking for definitinon of
 [ns:flash.display] Loader
R1 > Getting definition for
 [ns:flash.display] Loader
R1 367: ...

 69 FileAttributes
 77 Metadata
 65 ScriptLimits
 9 SetBackgroundColor
 2 DefineShape
 39 DefineSprite
 26 PlaceObject2
 41 ProductInfo
 43 FrameLabel
 82 DoABC // ActionScript 3
 76 SymbolClass
 1 ShowFrame

Guided Code-ExecutionStructural Analysis

Fig. 1. Schematic depiction of the analysis and detection process of Gordon with a
Flash-based malware as input, the two-step analysis of the profiler and the classification
of our method’s detector as output.

2 System Overview

The diverse nature of attacks based on Flash requires an analysis method to
inspect these animations on different levels. To this end, we implement our
method Gordon by integrating it into different processing stages of two Flash
interpreters, thereby blending into existing loading and execution processes.
This allows us to make use of data generated directly during execution, such
as dynamically constructed code or downloaded files. We achieve this analysis
using the following two-step procedure (see Figure 1): First, we instrument the
processing unit of the Flash interpreter in order to profile a malware’s structure
as well as the execution of contained code. Second, we combine these profiles
into a common representation to power a classifier based on machine learning
techniques, that allows to effectively discriminate malicious from benign Flash
animations.

Profiling the Malware. Gordon’s profiler is implemented on the basis of two
popular and mature open-source implementations of the Flash platform that
are complementary with respect to the versions they support: Gnash [20]
and Lightspark [34]. While Gnash provides support for Flash up to version 9,
Lightspark enables processing version 9 and higher. As a result, Gordon is
able to analyze all currently relevant versions and file formats of Adobe Flash
animations, including all versions of ActionScript code. The profiling implemented
for both interpreters features two kinds of analyses, that in turn make use of
data arising during an interpreter’s regular loading and execution process [1]:

– First, the profiler of Gordon inspects the hierarchical composition of the
Shockwave Flash (SWF) format. This can be done during the loading phase
when the interpreter parses the file for further processing (Section 3).

– Second, the control flow of embedded ActionScript code is analyzed in order
to determine indicative regions. By strategically changing the control flow
at branches in the code, Gordon guides execution along paths covering as
much indicative regions as possible (Section 4).

3

Detecting Flash-based Malware. Based on the output of these different analyses,
we are then able to decide whether a particular Flash animation is malicious
or not. To this end we translate the structural report of a file and the execu-
tion trace of contained ActionScript code into a representation that allows to
train a machine learning classifier (Section 5).

3 Structural Analysis

We begin our analysis by breaking down Flash animations into tags, the primary
containers employed by the SWF file format [2] to store ActionScript code as
well as data of various kinds, including audio, video, image and font data. Due
to the large number of different types of tags Flash files expose a huge attack
surface for memory corruption exploits. As a consequence, many exploits rely on
very specific types and arrangements of tags to succeed, and thus, the sequence
of tags alone can already serve as a strong indicator for malware.

For the structural analysis as employed by Gordon only tag identifiers and
structural dependencies are of interest, contained data on the other hand is not
considered. Consequently, Gordon does not need to know about the format of
individual tags and hence can be applied to unknown tags, e.g., tags introduced
in future versions. However, to further enhance the overall detection our method
may be combined with approaches to specifically target data formats that can be
included in a Flash animation’s tags. Moreover, exploits often rely on corrupt or
incomplete tags. To better account for these, we additionally include two specific
tag identifiers that mark (a) incomplete tags, i.e. tags that are known to the
interpreter, but could not be correctly parsed and (b) tags that contain additional
data beyond their specified limits. The latter occurs, for instance, whenever the
file contains data at the end that is not fully contained in its last tag.

As a result of this structural analysis, we obtain a sequence of container types
including their nestings for each Flash file. Figure 2 shows the resulting container
listing for a sample1 of the LadyBoyle malware using CVE-2015-323.

69 FileAttributes
77 Metadata
9 SetBackgroundColor
2 DefineShape

39 DefineSprite
26 PlaceObject2

86 DefineSceneAndFrameLabelData
43 FrameLabel
87 DefineBinaryData // Payload
87 DefineBinaryData // Payload
82 DoABC // ActionScript 3
76 SymbolClass
1 ShowFrame

Fig. 2. Excerpt of the structural report for a LadyBoyle malware sample1.

1 md5: cac794adea27aa54f2e5ac3151050845

4

In comparison to many other Flash animations, the content of this file is rather
short. However, for this specific sample the presence of the DefineBinaryData and
DoABC tags is crucial. The first contain the malware’s payload as binary data,
which in turn gets extracted by ActionScript 3 code embedded in the latter.
These tags in combination comprise the malicious functionality of the sample.
While in this particular case the structure alone is only an indicator for the
malicious behavior, that needs to be backed up by an analysis of the embedded
ActionScript code, other types of malware rely on corrupt tags that allow to
distinctively distinguish these. Some containers, such as the DefineShape tag,
allow to enclose an arbitrary number of other containers. We include these in
the listing as children of the parent tag. Note that the DefineShape tag and
its children are not present in the original sample and have been added for
illustration purposes only.

For convenience, the structural report can also be represented as a sequential
list of identifiers, where nested containers are indicated by brackets:

69 77 9 2 [39 26] 86 43 87 87 82 76 1

It is important to note, that this representation already encodes the com-
plete hierarchy and relations of the tags to each other. This condensed form is
particularly suitable for automated approaches that do not require a textual
description of the tags. We revisit this topic when discussing the implementation
of Gordon’s detector in Section 5.

4 Guided Code-Execution

When analyzing a sample with Gordon we aim at observing as much indica-
tive behavior of a Flash animation as possible—ideally the analysis covers all
possible execution paths and corner cases. However, as extensively discussed in
computer security literature in the past [e.g., 27, 30] this is not feasible due to
the potentially exponential number of different paths, making it necessary to
revert to approximations and heuristics in practice.

While related approaches orient analysis to normal execution [27, 44, 48]
or external triggers [6, 14, 30], our method guides execution towards indicative
code regions: Each branch is chosen such that the execution corresponds to
the path that covers the most indicative ActionScript code not observed so far.
In particular, we are interested in exploring paths containing security-related
objects and functions as well as branches that contain more code than others.
Figure 3 exemplarily shows the selected paths of two consecutive runs. During
the first, Gordon’s profiler guides execution towards the loadMovie function,
which enables Flash animations using ActionScript 2 to dynamically load code in
form of another SWF file. The second run then directs the interpreter along the
path covering the most bytecode instructions. This strategy can hence be seen as
a way to not only maximize code coverage locally (within the sample itself), but
globally, including all code that is loaded dynamically.

5

14

3

2

2

Run #1:
Loading of

code
Run #2:

Best code
coverage

3 6

4

5 12

9

15

3

9

?loadMovie

Fig. 3. Illustration of the path-selection strategy. Node labels correspond to the amount
of bytecode instructions in each basic block. Black lines indicate chosen execution paths.

This is made possible by inspecting the control flow of the ActionScript code
contained in a Flash file with the aim of learning a) how much code can be covered
along a specific path and b) where security-related objects and functions such as
the aforementioned loadMovie are located. To this end, we first derive the control-
flow graph (CFG) of the ActionScript bytecode in question and remove cycles
induced by loops and recursive function calls (Section 4.1). Second, the resulting
graph is annotated with locations of indicative functionality and the number
of instructions contained in each branch, which in turn enables us to efficiently
determine the overall code coverage of individual paths (Section 4.2). The results
of this analysis is then used for the actual execution of the Flash animation,
allowing Gordon to navigate through the code in a targeted way (Section 4.3).

4.1 Control-Flow Analysis

A control-flow graph (CFG) as shown in Figure 4 contains basic code blocks as
its nodes and directed edges for branches connecting them [see 3]. As part of
the Adobe Flash Player’s verification phase, the ActionScript VM already checks
certain control flow properties when bytecode is loaded into the interpreter [1].
Our control-flow analysis can thus be thought of as a natural extension to the
examinations conducted by Flash interpreters. We, however, make use of this
information only as a starting point for the following analysis.

Upon the generation of a CFG, we are ready to find execution paths that
maximize code coverage. To easily determine these paths, the graph needs to
first undergo a few modifications. In particular, it is necessary to eliminate cycles
that occur due to loop statements in the code. Once these cycles are removed
we obtain an acyclic control-flow graph (ACFG) which allows us to efficiently
determine the code size of complete paths in the graph. To this end, we rewrite
all back-edges (edges pointing backwards with respect to the control flow) by
linking them to the first code block after the loop. Figure 4 demonstrates this for
a simple while loop. All conventional loop, nested loops and their special cases
such as unnatural loops can be efficiently resolved using the dominance relations
of the individual nodes [see 3].

6

var a:int = 294;

var b:int = 1722;

while (b != 0)

{

var h:int = a % b;

a = b; b = h;

}

trace(a);

Fig. 4. An ActionScript 3 snippet, the corresponding control flow graph (CFG) and
its acyclic transformation (ACFG). Dark nodes represent loop headers, bright nodes
generic code blocks; newly inserted edges are shown in red.

4.2 Annotating Control-Flow Edges

Once an ACFG has been generated, we annotate each of its edges with the number
of bytecode instructions covered by the following code block. We artificially
increase the weight of individual instructions, if they correspond to security-
related objects and functions. For example, to pinpoint the dynamic loading of
code, we set the weighting for calls to the loadMovie function (ActionScript 2)
and the Loader object (ActionScript 3) to the maximum to ensure the analyzer
targets these first. Both are frequently used by Flash-based malware to load code
downloaded from the Internet or dynamically assembled at runtime. Similarly, it is
possible to emphasize other security-related functions and objects in ActionScript,
such as readBytes and ByteArray which are often used for obfuscated code.

Given the annotated graph, the search for the most indicative code regions
can be rephrased as a longest-path problem. For arbitrary graphs determining
the longest path is NP-hard. Fortunately, for directed acylic graphs such as the
ACFG extracted previously, this is possible [see 11, 38].

4.3 Path Exploration

With the annotated ACFG at hand, we can now guide the interpreter to execute
security-related or large code regions by stopping at every conditional jump and
choosing the branch corresponding to the path with the highest weight. In order
to avoid executing indicative code unnecessarily often, we constantly update
visited regions within the ACFG. Moreover, Gordon enables multiple executions
based on the coverage analysis of previous runs. Hence, a different path is taken
and different code regions are visited in each run, thereby challenging adversarial
attempts to hide payload in paths not covered initially. As analysis output of the
guided execution, we obtain all covered ActionScript instructions across multiple
execution runs. Figure 5 shows a short excerpt of the instructions executed by a
malware to facilitate the CVE-2015-03-313 exploit2 in the first run (R1).

Instructions at offset 973 to 983 show how the malware obfuscates the usage
of the ByteArray object at offset 984. This object is frequently used to construct
malicious payloads at run-time. The complete listing shows how the encrypted
payload is composed out of different parts, decrypted and finally loaded.

7

R1 973: pushString "fla"
R1 975: pushString "sh.uti"
R1 977: add "fla" + "sh.uti"
R1 978: pushString "ls.Byt"
R1 980: add "flash.uti" + "ls.Byt"
R1 981: pushString "eArray"
R1 983: add "flash.utils.Byt" + "eArray"
R1 984: callProperty [ns:flash.utils] getDefinitionByName 1
R1 > Looking for definition of [ns:flash.utils] ByteArray
R1 > Getting definition for [ns:flash.utils] ByteArray
R1 987: getLex: [ns:] Class

Fig. 5. Excerpt of behavioral report2.

In the following we address certain implementation details of Gordon’s
guided code-execution with a special focus on the characteristics of Flash-based
malware and potential adversarial attempts to avoid analysis.

Reducing Branch Candidates. Although Gordon is capable of pursuing all
branches in ActionScript code, narrowing down the candidates speeds up the
process and limits the possibility of breaking the semantics of a sample. Often, web-
based attacks are tailored towards specific browser environments and thus only
trigger malicious activity upon checking for the correct target environment [27, 44].
The conditional jumps underlying these checks provide excellent candidates for
our guided execution, as they usually lead to a malware sample’s payload and are
likely to be mutually exclusive, therefore reducing the risk of semantic side-effects.

To restrict our analysis to these conditional jumps, we implement a taint-
tracking mechanism that propagates taint from environment-identifying data
sources to conditional jumps. In the scope of Flash-based malware, such data typ-
ically originates from the System.capabilities and flash.system.Capabilities

data structures available in ActionScript 2 and 3, respectively. To track the data
flow across built-in functions, we conservatively taint the result whenever at least
one of the input arguments is tainted. Note that for simplicity, we do not consider
implicit data-flow and control dependencies in our implementation [see 8, 31] but
leave this for future work.

Countering Obfuscation. To account for dynamically loaded code, we additionally
hook the interpreter’s loading routines. All such code then passes through the
same analysis steps as the host file, allowing to analyze files downloaded from the
Internet as well as potentially encrypted code embedded in the Flash animation
itself equally thoroughly. This scheme is applied recursively to ensure that all
code is covered by our analysis.

Furthermore, Gordon implements an adaptive timeout mechanism rather
than a fixed period of time as utilized in previous works [13, 19, 44]. In particular,
we reset a 10s timer each time the sample attempts to load code, giving the
sample time to react to this event. This may increase the analysis duration for
certain files but significantly reduces the effort for those that do not load data
or do not contain ActionScript code at all. On average a sample is executed for
12.6 seconds with a maximum duration of 3 minutes, reducing the analysis time
by 93% compared to a fixed timeout.

2 md5: 4f293f0bda8f851525f28466882125b7

8

We also take precautions for the possibility that an execution path is not
present in the statically extracted ACFG. In these rare cases, we switch to
determining the size of the branch in an online manner: Gordon looks ahead in
order to inspect the instructions right after the branching point and passively
skips over instructions to determine the sizes of the branches. This analysis in
principle is the same as performed earlier (Section 4.1) but applied to the newly
discovered piece of bytecode only.

Lastly, we have observed an increase in the use of event-based programming
in recent malware—presumably to circumvent automatic detection—and thus
incorporate the automatic execution of such events into Gordon’s profiler.
Immediately after an event listener is added the specified function gets passed an
appropriate dummy event object and is executed without waiting for the actual
event to happen.

Updating the ACFG. Our method is designed to run a sample multiple times. To
this end, we update the edge labels of the ACFG during execution to reflect the
visited code and recompute the largest path in an online manner. Consequently,
our method implements a lightweight variant of multi-path exploration that
executes different code during each run. Since we decide on each condition at
runtime and identical code regions (functions) may be referenced multiple times
we not only cover the code of the single largest path in the graph but potentially
a combination of a number of paths. This softens the definition of such a path as
used in graph theory but makes a lot of sense for this application especially.

5 Learning-based Detection

In order to demonstrate the expressiveness of our analysis, we implement a
learning-based detector that is trained on known benign and malicious Flash
animations. This approach spares us from manually constructing detection rules,
yet it requires a comprehensive dataset for training (see Section 6.1). However,
as most learning algorithms operate on vectorial data, we first need to map the
analysis output of Gordon to a vector space.

Vector Space Embedding. To embed the structural and behavioral reports generated
by Gordon in a vector space, we make use of classic n-gram models. These mod-
els have initially been proposed for natural language processing [9, 41] but are also
used in computer security for analyzing sequential data [e.g., 24, 28, 33, 39, 47].

In particular, we extract token n-grams from both kinds of analysis outputs
by moving a sliding window of length n over the tokens in the reports. While
the compact output representation of Gordon’s structural analysis already is in
a format that can be used to extract such tokens, the reports generated by the
guided code-execution need to be normalized first: We extract all instructions,
including their names and parameters. Moreover, we replace values passed as
parameters with their respective type, such as INT, FLOAT or STR. To avoid loosing
relevant information we however preserve all names of operations, functions and
objects. Finally, we tokenize the behavioral reports using white-space characters.

9

High-order n-grams compactly describe the content, implicitly reflect the
structure of the reports and can be used for establishing a joint map to a vector
space. To this end, we embed a Flash animation x in a binary vector space
{0, 1}|S| spanned by the set S of all observed n-grams in the analysis output.
Each dimension in this vector space is associated with the presence of one n-gram
s ∈ S. Formally, this mapping φ is given by

φ : x 7−→
(
b(s, x)

)
s∈S

where the function b(s, x) returns 1 if the n-gram s is present in the analysis
output of the file x and 0 otherwise.

Classification. Based on this vector space embedding, we apply a linear Support
Vector Machine (SVM) for learning a classification between benign and malicious
Flash animations. While several other learning algorithms could also be applied
in this setting, we stick to linear SVMs for their excellent generalization capability
and very low run-time complexity, which is linear in the number of objects and
features [37].

In short, a linear SVM learns a hyperplane that separates two classes with
maximum margin—in our setting corresponding to vectors of benign Flash
animations and Flash-based malware. The orientation of the hyperplane is
expressed as a normal vector w in the input space and thus an unknown sample
can be classified using an inner product as follows

f(x) = 〈w, φ(x)〉 − t

where t is a threshold and f(x) the orientation of φ(x) with respect to the
hyperplane. That is, f(x) > 0 indicates malicious content in x and f(x) ≤ 0
corresponds to benign content.

Due to the way the mapping of n-grams is defined, the vector φ(x) is sparse:
Out of millions of possible token n-grams, only a limited subset is present in
a particular sample x. These vectors can thus be compactly stored in memory.
Also, the inner product to determine the final score can be calculated in linear
time in the number of n-grams in a sample

f(x) =
∑
s∈S

ws b(s, x) =
∑
s in x

ws − t

We integrate this classifier into Gordon, such that it can be applied to either
the analysis outputs individually or to the joint representation of both.

6 Evaluation

We proceed to empirically evaluate the capabilities of Gordon in different exper-
iments. In particular, we study the effectiveness of the guided execution in terms
of code covered (Section 6.2), compare the detection performance with related
approaches (Section 6.3) and further demonstrate the effectivity of Gordon in
a temporal evaluation (Section 6.4). Before presenting these experiments, we
introduce our dataset of Flash-based malware and benign animations.

10

6.1 Dataset Composition

The dataset for our evaluation has been collected over a period of 12 consecutive
weeks. In particular, we have been given access to submissions to the VirusTotal
service, thereby receiving benign and malicious Flash files likewise. Since many
web crawlers are directly tied to VirusTotal, the collected data reflects the current
landscape of Flash usage to a large part.

We split our dataset into malicious and benign Flash animations based on
the classification results provided by VirusTotal two months later: A sample is
marked as malicious, if it is detected by at least 3 scanners and flagged as benign,
if none of the 50 scanners hosted at VirusTotal detects the sample. Samples that
do not satisfy one of the conditions are discarded. This procedure enables us to
construct a reasonable estimate of the ground truth, since most virus scanners
refine their signatures and thus improve their classification results over time. The
resulting dataset comprises 1,923 malicious and 24,671 benign Flash animations,
with about half the samples being of version 8 or below and the other half of
more recent versions, therefore handled by the ActionScript VM version 1 and 2
respectively. A summary of the dataset is given in Table 1.

Table 1. Overview of the evaluation dataset

Classification AVM1 AVM2 Total

Malicious 864 1,059 1,923
Benign 12,046 12,625 24,671

Total 12,910 13,684 26,594

To account for the point in time the samples have been observed in the wild,
we group the samples in buckets according to the week of their submission to
VirusTotal. Consequently, we obtain 12 sets containing benign and malicious
Flash animations corresponding to the 12-week evaluation period. These temporal
sets are used during the evaluation to construct temporarily disjoint datasets for
training and testing to conduct our experiments in strict chronological order: For
our experiments the performance is determined only on samples that have been
submitted to VirusTotal after any sample in the training data. This ensures an
experimental setup as close to reality as possible and demonstrates the approach’s
effectivity of providing timely protection.

6.2 Coverage Analysis

In our first experiment, we evaluate the effectiveness of the proposed guided
code-execution strategy. To this end, we investigate the code coverage of malware
samples in our 12 week dataset. We apply Gordon to the malware and inspect the
output of the interpreter. Due to obfuscation techniques employed by malware, the
amount of statically contained code of a Flash file often is not a reliable measure
in this setting. Hence, we compare the number of executed instructions with

11

respect to a regular execution of the samples. With the path-exploration strategy
employed by Gordon, we manage to oberserve over 50% more ActionScript
code than during a naive execution, and unveil crucial information not provided
otherwise. We mainly credit this leap in coverage to the recursive analysis of
dynamically loaded code and code assembled at runtime.

6.3 Comparative Evaluation

We continue to evaluate the detection performance of Gordon, showing its
ability to correctly classify Flash-based malware and specifically compare our
method with FlashDetect3 [44]. In particular, we evaluate the approaches on
the complete set of 12 consecutive weeks, where we use weeks 1–6 for training and
weeks 7–9 for validation to calibrate the parameters of the detectors. We then
combine these two sets for final training and apply the detectors to weeks 10–12
for testing the detection performance. Table 2 summarizes the results as the
true-positive rates and the corresponding false-positives rates of the methods.

Table 2. Detection rates of FlashDetect & Gordon.

Method FlashDetect3 Gordon-1% Gordon-0.1%

False-postive rate 1% 1% 0.1%
True-positive rate 26.5% 95.2% 90.0%

Gordon. As described in Section 5 Gordon’s detector can be applied to either
the analysis outputs individually or to the joint representation of both. The
relation thereof is shown in Figure 6(a) as a ROC curve with the detection
performance as true-positive rate on the y-axis over the false-positive rate on the
x-axis. To map the reports of Gordon’s profiler to the vector space we make
use of 4-grams. Each representation and the combination of both are plotted as
different curves.

At a false-positive rate of 0.1% the individual representations attain a detection
rate of 60–65%. The combination of both (Gordon-0.1%) increases the detection
performance significantly and enables spotting 90.0% of the Flash-based attacks.
If the false-positive rate is increased to 1%, our method even detects 95.2% of
the malicious samples in our dataset (Gordon-1%). Additionally we break down
this results by CVE numbers. Figure 6(b) shows the detection performance as
true-positive rate over the years of appearance of the particular vulnerabilities in
our dataset. The average performance is slightly below the overall detection rate,
indicating that we also detect malware that does not carry exploits itself, but
facilitates a different attack or uses obfuscation to obscure the presence of an
exploit. This perfectly demonstrates the capabilities of our approach: First, the
complementary views on the behavior and structure of Flash animations provide
a good basis for analyzing attacks and, second, this expressive representation can
be effectively used for detecting malware in the wild.

3 Versions not supported by FlashDetect (version 8 and below) have been excluded.

12

0.000 0.005 0.010 0.015 0.020
False-positive rate

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
ra

te

90%
95%

Gordon
Guided execution
Structural analysis

'07 '09 '10 '11 '12 '13 '14 '15
Year of CVE

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
ra

te

Average
Gordon

Fig. 6. Detection performance of Gordon as ROC curve and sorted by CVE numbers.

FlashDetect. For the related method FlashDetect we slightly modify the
setting and exclude Flash animations of versions below 9 from the evaluation,
as this detector is dedicated to the analysis of ActionScript 3 malware only.
Nevertheless, FlashDetect only identifies 26.5% of the malicious Flash samples
at a false-positive rate of 1%.

Although FlashDetect employs a heuristic for eliciting malicious behavior
during the execution of a Flash animation, it misses 3 out of 4 attacks. We
attribute this low performance to two issues: First, compared to our method the
employed branch selection strategy is less effective and second, the method has
been tailored towards specific types of attacks which are not prevalent anymore.
Gordon in contrast does not rely on manually selected features, but models
the underlying data using n-grams. Therefore it can better cope with the large
diversity of today’s malware. Due to the low performance of FlashDetect, we
omit it from the ROC curve in Figure 6(a).

AV Engines. We finally determine the detection performance of 50 virus scanners
on the testing dataset. The 5 best scanners detect 82.3%–93.5% of the malicious
samples. However, due to the very nature of signature-based approaches they
provide detection with practically no false positives. If we parametrize Gordon
to zero false positives only 47.2% of the malware is detected. This clearly shows,
that Gordon cannot compete with manually crafted signatures in the long
run, but provides solid detection of Flash-based malware shortly after its first
occurrence in the wild without the need for manual analysis.

As a consequence, we consider our method a valuable tool for improving the
analysis of Flash-based malware in the short run and a way to provide traditional
approaches with a good starting point in day-to-day business to efficiently craft
signatures for AV products.

6.4 Temporal Evaluation

To demonstrate the use of Gordon as a fast, complementary detector, we study
its performance over several weeks of operation. We again make use of 4-grams
and 12 consecutive weeks of collected Flash data. This time we however apply
the detector one week ahead of time, that is, we classify one week after the other,
based on the previous weeks.

13

We start off with week 1 as training, week 2 as validation and week 3 as
first test dataset. Over the course of the experiment we shift the time frame
forward by one week and likewise increase the training dataset. This can be seen
as expanding a window over the experiment’s period of time. Hence, Gordon’s
detector accumulates more and more data for training—just as a system operating
in practice would. In order to optimally foster complementary approaches we
choose a rather liberal false-positive rate of 1%. Figure 7 shows the true-positive
rates achieved by our method during 10 weeks of operation. Gordon starts
off below its average performance and takes time till week 5 to perform well,
reaching detection rates between 80% and 99% for the remaining weeks. As
our method makes use of machine learning techniques, the detector requires
a certain amount of training data before it is fully operational and reaches
its optimal performance. If parametrized to 0.1% false positives, Gordon still
reaches detection performances of 82% on average.

3 4 5 6 7 8 9 10 11 12
Week

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
ra

te

Linear regression
Gordon

Fig. 7. Gordon’s performance over 12 consecutive weeks. The red line illustrates
the detector’s progression over time, showing a clear uptrend towards its optimal
performance.

Overall, this experiment shows Gordon’s potential to improve on the detec-
tion performance shortly after a malware’s appearance in the wild. We consider
the number of false-positives—benign samples that need to be additionally ana-
lyzed without directly resulting in a malicious signature—as tolerable trade-off
for the leap taken in short-term detection performance. In practice, one may
start off with a rather strict configuration, accept a lower gain and scale up the
interval according to available resources.

7 Limitations

The experiments discussed in the previous section demonstrate that our method
provides an effective solution for the analysis and detection of Flash-based
malware. Nonetheless, our approach has some limitations which are discussed in
the following.

14

Breaking Code Semantics. With Gordon we make a trade-off between com-
pleteness and simplicity of analysis. By pragmatically forcing the execution of
specific branches the analyzer avoids expensive computions at execution-time,
but may—similar to previous approaches [27, 48]—break semantics of underlying
code. Our experiments however show that restricting Gordon to branches which
depend on environment-identifying data (c.f. Section 4) reduces the impact of
such inconsistencies and that the overall effectiveness of the detector is not
influenced in a negative way. Note that, Gordon’s path-exploration strategy of
guiding analysis towards indicative code regions can also be used in combination
with symbolic execution—an adaption worth exploring in future work.

Analysis-aware Malware. Experience has shown that successful analysis systems
have repeatedly been subject to dedicated evasion techniques of various types [10].
For Gordon two particular variations come to mind: First, a malware author
may leverage differences in implementation of Lightspark and Gnash compared to
the Adobe Flash Player. While this is true, the underlying concepts of Gordon
can be easily transferred to any interpreter when used in production, possibly
using instrumentation [21].

Second, malware might hide its payload in a seemingly irrelevant, low-weighted
branch, veiled by branches containing more instructions—potentially across
multiple stages. By maximizing the code coverage over multiple executions,
Gordon systematically restricts the available space for hiding malicious code.
The number of executions thereby is a parameter that allows to strike a balance
between coverage and analysis time. Furthermore, the proposed weighting of the
annotated ACFG can be refined to better characterize indicative code regions
and adapted to malware trends. This can be deployed without the need to change
the underlying analysis system and enhanced as analysis-aware malware evolves.

Dynamic Loading of Other File Formats. Although Gordon inspects dynamically
loaded code in the form of Flash animations, we do not currently track and
analyze other file formats such as audio, video and image containers. These have
shown to be a possible attack vector in the scope of Flash malware in the past and
have been considered in other malware analysis systems [19, 44]. The detection
of embedded malware, however, is a research field of its own and ranges from
statically matching shellcode signatures to finding suspicious code in different file
containers [4, 39, 40, 50]. For Gordon, we thus consider the analysis of other file
formats mainly an engineering effort of integrating other successful approaches.

Interaction with JavaScript and the DOM. Similarly to malware families that make
use of ActionScript to set the grounds for exploiting a particular vulnerability in
the browser, there also exist attack campaigns that utilize JavaScript for heap
spraying, for instance, in order to exploit a vulnerability in the Flash Player. This
cannot be handled with the current prototype of Gordon as we solely focus on
the Flash part in this paper. Bringing together our method with systems that
have proven effective for detecting JavaScript malware [e.g., 13, 16, 35] may close
this gap elegantly.

15

Machine Learning for Malware Detection. Finally, as Gordon’s detector is based
on machine learning, it may be vulnerable to mimicry attacks [18, 46, 47]. For
n-gram models, Fogla and Lee [17] show that generating a polymorphic blending
attack is NP-hard, but can be approximated for low-order n-grams. While non-
trivial in practice, such attacks could theoretically be conducted against Gordon.
However, the use of high-order n-grams elevates complexity to a level where
such attacks become impractical. In addition to mimicry, a powerful attacker
may systematically introduce samples to shift the classification boundary to
her advantage [5, 23]. These attacks can have an effect on Gordon’s detector,
but require access to large portions of the training data to be effective. As a
consequence, such attacks can be alleviated if data from different sources is mixed
and subsequently sanitized [15].

8 Related Work

A large body of research has dealt with the detection and analysis of web-based
attacks, yet Flash-based malware has received only little attention so far. In this
section, we discuss work related to Gordon, focusing on two strains of research:
(1) Flash-based malware and (2) multi-path exploration.

Note that the implementations of JavaScript and ActionScript interpreters
are fundamentally different, making an application of detection approaches for
malicious JavaScript source-code unlikely to operate on Flash-based malware
available in bytecode. Consequently, we do not discuss approaches for malicious
JavaScript code in this paper and refer the reader to a wide range of research [7,
13, 26, 27, 35]. Nonetheless, combining detection methods for malicious JavaScript
and Flash can be of considerable value. Also, the work by Šrndić and Laskov [45]
is of particular interest, since they have been the first to show the practicality of
using hierarchical document structure for detection.

Flash-based Attacks and Malware. Only few works have studied means to fend off
malware targeting the Adobe Flash platform [19, 44]. OdoSwiff [19], focuses
on detecting malicious ActionScript 2 Flash advertisements based on expert
knowledge of prevalent attacks. In contrast to OdoSwiff, our method employs
machine learning to automatically produce a classifier based on benign and
malicious Flash animations. FlashDetect [44], the successor of OdoSwiff also
makes use of machine learning techniques and, similar to Gordon, employs an
instrumented interpreter to dump dynamically loaded code. However, FlashDe-
tect only pursues one level of staged-execution, focuses solely on ActionScript 3
and employs a simple heuristic for subverting environmental checks that has
proven insufficient for modern Flash-based malware. By contrast, Gordon aims
at maximizing the coverage of indicative code regions independent of particular
attacks, across multiple stages and versions. As a result, our method allows to
uncover vitally more code than FlashDetect and thereby attains a better
basis for detecting attacks. Furthermore, by not relying on hand-crafted features
Gordon can better cope with the large diversity of today’s malware.

16

Industry research has mainly focused on instrumenting Flash interpreters for
analysis purposes. Wook Oh [49], for instance, presents methods to patch Action-
Script bytecode to support function hooking, and more recently, Hirvonen [21]
introduces an approach for instrumenting Flash based on the Intel Pin Platform.
These systems complement Gordon and may be used to implement our method
for other platforms.

Aside from Flash-based malware and therefore, orthogonal to Gordon several
authors have inspected the malicious use of Flash’s cross-domain capabilities [25],
its vulnerability to XSS attacks [43] and the prevention of such [29].

Multi-path Exploration. Ideally an analysis covers all possible paths and corner
case, which however is not feasible due to the potentially exponential number
of different execution paths. Most notably in this context is the work by Moser
et al. [30], who propose to narrow down analysis to paths influenced by input
data such as network I/O, files or environment information. While this effectively
decreases the number of paths to inspect it still exhaustively enumerates all paths
of this subset under investigation. A second strain of research has considered
symbolic execution for the analysis of program code and input generation [e.g.,
12, 36]. Brumley et al. [6] combine dynamic binary instrumentation with symbolic
execution to identify malware behavior triggered by external commands. Similarly,
Crandall et al. [14] use symbolic execution to expose specific points in time where
malicious behavior is triggered. Equally to the enumeration of paths, symbolic
execution shares the problem of an exponential state space.

With Rozzle, Kolbitsch et al. [27] also make use of techniques from symbolic
execution. However, instead of generating inputs, data in alternative branches
is represented symbolically and, upon subsequent execution of both branches,
merged. In doing so, Kolbitsch et al. except to break existing code due to the
execution of infeasible paths. Based on the symbolic representation Rozzle likewise
is subject to an exponential state space that is dealt with by limiting the depth
of the symbolic trees used. Limbo [48] avoids this kind of state explosion and
reverts to a more simple strategy of forcing branching conditions to monitor
execution. Limbo however again exhaustively enumerates paths and thus does
not address the underlying problem in the first place.

All these methods are either driven by the original execution path [27, 48] or
focus on external triggers [6, 14, 30]. Gordon on the other hand, first identifies
indicative code regions and guides the interpreter towards these, enabling a
payload-centric analysis.

9 Conclusions

In light of an increasing number of vulnerabilities in Flash, there is an urgent
need for tools that provide an effective analysis and detection of Flash-based
malware. As a remedy, we present Gordon, a novel approach that combines
a structural analysis of the Flash container format with guided execution of
embedded ActionScript code—a lightweight and pragmatic form of multi-path

17

exploration. Our evaluation on 26,600 Flash samples shows that Gordon is
able to cover more code than observed with other approaches. Moreover, this
increase of coverage exposes indicative patterns that enable Gordon’s detector
to identify 90–95% of malware shortly after its appearance in the wild.

Our method can be used to bootstrap the current process of signature gener-
ation and point an analyst to novel malware samples. Gordon thereby provides
a valuable step towards the timely protection of end users. Furthermore, the
guided execution of code is a simple yet effective strategy for studying malicious
code that might also be applicable in other branches of malware analysis, such
as for JavaScript and x86 inspection.

Acknowledgments The authors would like to thank Emiliano Martinez of
VirusTotal for supporting the acquisition of malicious Flash files. Furthermore,
we gratefully acknowledge funding from the German Federal Ministry of Education
and Research (BMBF) under the projects APT-Sweeper (FKZ 16KIS0307) and
INDI (FKZ 16KIS0154K) as well as the German Research Foundation (DFG)
under project DEVIL (RI 2469/1-1).

References

1. Adobe Systems Incooperated. ActionScript virtual machine 2 (AVM2) overview.
Technical report, Adobe System Incooperated, 2007.

2. Adobe Systems Incooperated. SWF file format specification. Technical report,
Adobe System Incooperated, 2013.

3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and
Tools (2nd Edition). Addison-Wesley, 2006.

4. P. Baecher and M. Koetter. libemu - x86 Shellcode Emulation, 2008.
5. B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector

machines. In Proc. of International Conference on Machine Learning (ICML), 2012.
6. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin. Automatically

identifying trigger-based behavior in malware. In Botnet Detection, pages 65–88.
Springer, 2008.

7. D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a fast filter for the
large-scale detection of malicious web pages. In Proc. of the International World
Wide Web Conference (WWW), pages 197–206, Apr. 2011.

8. L. Cavallaro, P. Saxena, and R. Sekar. On the limits of information flow techniques
for malware analysis and containment. In Proc. of Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), pages 143–163, 2008.

9. W. Cavnar and J. Trenkle. N-gram-based text categorization. In Proc. of SDAIR,
pages 161–175, Las Vegas, NV, USA., Apr. 1994.

10. X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware. In
Proc. of Conference on Dependable Systems and Networks (DSN), pages 177–186,
2008.

11. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3rd Edition). MIT Press, 2009.

12. M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of vulnerabilities
in x86 executables. In Proc. of Annual Computer Security Applications Conference
(ACSAC), pages 269–278, 2006.

18

13. M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In Proc. of the International World Wide
Web Conference (WWW), pages 281–290, 2010.

14. J. R. Crandall, G. Wassermann, D. A. S. Oliveira, Z. Su, S. F. Wu, and F. T. Chong.
Temporal search: Detecting hidden malware timebombs with virtual machines.
In Proc. of International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 25–36, 2006.

15. G. Cretu, A. Stavrou, M. Locasto, S. Stolfo, and A. Keromytis. Casting out demons:
Sanitizing training data for anomaly sensors. In Proc. of IEEE Symposium on
Security and Privacy, pages 81–95, 2008.

16. C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Fast and precise in-
browser JavaScript malware detection. In Proc. of USENIX Security Symposium,
pages 33–48, 2011.

17. P. Fogla and W. Lee. Evading network anomaly detection systems: formal rea-
soning and practical techniques. In Proc. of ACM Conference on Computer and
Communications Security (CCS), pages 59–68, 2006.

18. P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic blending
attacks. In Proc. of USENIX Security Symposium, pages 241–256, 2006.

19. S. Ford, M. Cova, C. Kruegel, and G. Vigna. Analyzing and detecting malicious flash
advertisements. In Proc. of Annual Computer Security Applications Conference
(ACSAC), pages 363–372, 2009.

20. gnash. GNU Gnash. https://www.gnu.org/software/gnash, visited April 2016.

21. T. Hirvonen. Dynamic Flash instrumentation for fun and profit. In Proc. of Black
Hat USA, 2014.

22. httparchive. http://www.httparchive.org, visited April 2016.

23. L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D. Tygar. Adversarial
machine learning. In Proc. of ACM Workshop on Artificial Intelligence and Security
(AISEC), pages 43–58, 2011.

24. J. Jang, A. Agrawal, , and D. Brumley. ReDeBug: finding unpatched code clones
in entire os distributions. In Proc. of IEEE Symposium on Security and Privacy,
pages 48–62, 2012.

25. M. Johns and S. Lekies. Biting the hand that serves you: A closer look at client-side
flash proxies for cross-domain requests. In Proc. of Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), pages 85–103, 2011.

26. A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna. Revolver:
An automated approach to the detection of evasive web-based malware. In Proc.
of USENIX Security Symposium, pages 637–651, Aug. 2013.

27. C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet
malware. In Proc. of IEEE Symposium on Security and Privacy, pages 443–457,
2012.

28. P. Laskov and N. Šrndić. Static detection of malicious JavaScript-bearing PDF doc-
uments. In Proc. of Annual Computer Security Applications Conference (ACSAC),
pages 373–382, 2011.

29. M. T. Louw, K. Thotta, and V. N. Venkatakrishnan. AdJail: Practical enforcement
of confidentiality and integrity policies on web advertisments. In Proc. of USENIX
Security Symposium, pages 371–388, 2010.

30. A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware
analysis. In Proc. of IEEE Symposium on Security and Privacy, pages 231–245,
2007.

19

31. S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. A virtual machine
based information flow control system for policy enforcement. Electronic Notes in
Theoretical Computer Science (ENTCS), 197(1):3–16, 2008.

32. S. Özkan. CVE Details. http://www.cvedetails.com, visited April 2016.
33. R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. McPAD: A multiple classifier

system for accurate payload-based anomaly detection. Computer Networks, 5(6):
864–881, 2009.

34. A. Pignotti. Lightspark. https://github.com/lightspark, visited April 2016.
35. P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against heap-

spraying code injection attacks. In Proc. of USENIX Security Symposium, pages
169–186, 2009.

36. P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic
execution framework for javascript. In Proc. of IEEE Symposium on Security and
Privacy, pages 513–528, 2010.

37. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

38. R. Sedgewick and K. Wayne. Algorithms (4th Edition). Addison-Wesley, 2011.
39. M. Z. Shafiq, S. A. Khayam, and M. Farooq. Embedded malware detection using

markov n-grams. In Proc. of Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), pages 88–107, 2008.

40. S. J. Stolfo, K. Wang, and W.-J. Li. Towards Stealthy Malware Detection, volume 27
of Advances in Information Security, pages 231–249. Springer US, 2007.

41. C. Suen. N-gram statistics for natural language understanding and text processing.
IEEE Trans. Pattern Analysis and Machine Intelligence, 1(2):164–172, Apr. 1979.

42. A. Systems. Adobe Flash runtimes: Statistics. http://www.adobe.com/products/

flashruntimes/statistics.html, visited April 2016.
43. S. van Acker, N. Nikiforakis, L. Desmet, W. Joosen, and F. Piessens. FlashOver:

Automated discovery of cross-site scripting vulnerabilities in rich internet applica-
tions. In Proc. of ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 2012.

44. T. van Overveldt, C. Kruegel, and G. Vigna. FlashDetect: ActionScript 3 malware
detection. In Proc. of International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), pages 274–293, June 2012.

45. N. Šrndić and P. Laskov. Detection of malicious PDF files based on hierarchical doc-
ument structure. In Proc. of Network and Distributed System Security Symposium
(NDSS), 2013.

46. D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems.
In Proc. of ACM Conference on Computer and Communications Security (CCS),
pages 255–264, 2002.

47. K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly detector
resistant to mimicry attack. In Proc. of International Symposium on Recent
Advances in Intrusion Detection (RAID), pages 226–248, 2006.

48. J. Wilhelm and T. Chiueh. A forced sampled execution approach to kernel rootkit
identification. In Proc. of International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 219–235, 2007.

49. J. Wook Oh. AVM inception - how we can use AVM instrumentation in a beneficial
way. In Shmoocon, 2012.

50. C. Wressnegger, F. Boldewin, and K. Rieck. Deobfuscating embedded malware
using probable-plaintext attacks. In Proc. of Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), pages 164–183, Oct. 2013.

20

