
ZOE: Content-based Anomaly Detection for
Industrial Control Systems

Christian Wressnegger
Institute of System Security

TU Braunschweig

Ansgar Kellner
Institute of System Security

TU Braunschweig

Konrad Rieck
Institute of System Security

TU Braunschweig

Abstract—Due its complexity and a multitude of proprietary
components, industrial control systems are an immanently dif-
ficult field of application for intrusion detection. Proprietary
binary protocols and the lack of public specifications have
forced the research community to move away from content-based
detection to more abstract concepts. In this paper, we show that in
contrast to prior belief the content of unknown binary protocols
can very well be modeled. ZOE derives prototype models that are
specific to individual types of messages in order to capture the
characteristics of arbitrary binary protocols and enable detecting
different forms of attacks as anomalies. In an evaluation based
on 6 days of network traffic recorded at a large power plant
(1,900MW) with over 92,000 unique devices, we demonstrate
that ZOE improves upon related approaches by up to an order
of magnitude in detection performance, but also significantly
decreases false positives.

Index Terms—Industrial networks, SCADA, Attack Detection

I. INTRODUCTION

The protection of critical infrastructures is of utmost impor-
tance for society. Industrial facilities, such as power stations
and water supply systems, are high-value targets for terrorists
and nation-state attackers. The progressing automatization of
industrial processes and the interconnection between devices,
facilities and control centers significantly increases their attack
surface and imposes new challenges for security solutions. A
power plant, for instance, consists of a plethora of proprietary
software and hardware components from various manufacturers.
Many of these components use non-standardized protocols that
are specific to manufactures or even to a particular type of
device. Consequently, operators of an industrial facility usually
do not know about implementation details of the (computer)
systems they run. This renders the use of traditional intrusion
detection approaches for industrial control systems (ICS)
extremely difficult. As a result, the networks in industrial
control systems have been increasingly targeted by attacks in
the last years [e.g., 7, 15, 33, 47].

Without the availability of protocol specifications that
assist in preprocessing network data, an in-depth analysis
of communication content is difficult to accomplish. The
research community has thus moved towards approaches
that model the appearance of network traffic rather than its
content [28, 42, 52, 60] or even the underlying physical process
itself [24, 29, 61] in order to detect deviations from the
expected process states. This more abstract perspective allows
for the detection of specific classes of attacks, such as flooding

or incremental attacks, but also restricts defense more than
necessary. Stuxnet, for instance, has sabotaged the overall
production process by making small, infrequent changes to the
motor speed of centrifuges [15]. While only subtle changes
have been made, these operations happened out of the ordinary
and posed anomalies among the usual bus communication with
respect to used input values. Thus, given a precise model of
normality such anomalies can be detected—both on a process-
as well as the network-level.

Constructing these models however is inherently difficult.
Industrial facilities are subject to changes in hardware (e.g., sen-
sors, PLCs, etc.) and adaptations of the process itself. On the
one hand, using an expert model of the physical process for
detection, implies that this model has to be manually updated at
every change in order to prevent divergence from reality that in
turn may result in loopholes for an attacker. On the other hand,
machine learning has been used to automatically learn and
update models of communication contents instead. Previous
research has demonstrated the effectiveness of anomaly detec-
tion for network-based intrusion detection for various fields
of application and protocols [63, 65–67, 71, 72]. However,
the prevalent use of proprietary binary protocols in industrial
networks significantly complicates the use of content-based
approaches for the detection of intrusions and often renders
existing approaches ineffective [23].

In this paper we attempt to bridge this gap and present ZOE, a
framework that effectively and efficiently makes use of content-
based anomaly detection for proprietary binary protocols. We
show that content models are very well usable for environments
that rely on undocumented protocols with high-entropy data.
To this end, we introduce the concept of prototype models,
that is, prototypical representations specific to individual types
of messages. These models not only characterize the structure
of message types but also the data they typically contain.
Moreover, we present a linear-time algorithm for learning and
applying these models based on Count-Min Sketches [9], that
breaks up the separation of traditional clustering methods and
anomaly detection.

For the evaluation of our approach we have recorded
roughly 210GiB of network traffic from two industrial
facilities, a large power plant producing about 1,900MW
and a coal mining facility. During 6 days of operation we
have gathered data from 92,700 unique devices on control
level and field level of the facilities. As recordings of attacks
in industrial environments are particularly rare, we have

additionally developed a tool that automatically generates
abnormal network messages based on authentic communication.
This enables us to calibrate our detector with varying difficulty.
We empirically evaluate our approach based on the six most
prominent protocols in the recorded data and show that ZOE
not only improves over related approaches by up to an order
of magnitude in detection performance, but also significantly
decreases false-positives.

In summary we make the following contributions:

• Prototype Models for Network Messages. We introduce
the concept of prototype models and present a linear-time
algorithm for constructing these based on large amounts
of network traffic. These models not only characterize the
structure of individual message types but also the data
they typically contain.

• Noise-resilient Anomaly Detection. We demonstrate how
protocol models can be used to prune out irrelevant, noisy
features that arise from the intermingling of structure
and data in binary protocols. This enables us to further
enhance the expressiveness of the models and thus allows
for robust anomaly detection in environments with high-
entropy data.

• Large-scale evaluation using authentic SCADA data. We
conduct a large-scale evaluation with authentic data from
two different industrial facilities for coal mining and power
generation. This includes PROFINET IO traffic at the field
level as well as five entirely undocumented protocols at
control level with more than 210GiB of data involving
92,700 unique devices.

The rest of the paper is organized as follows: The problem
statement is outlined in Section II. Section III then describes
our method ZOE and how prototype models are used for attack
detection in proprietary protocols. Section IV describes the
data that has been gathered for the evaluation presented in
Section V. Related work is discussed in Section VI before
Section VII concludes the paper.

II. PROBLEM STATEMENT AND SCOPE

Protecting industrial computer networks, such as ICS and
SCADA systems, from attacks is a daunting task. While
networks in industrial facilities are much more homogeneous
than general-purpose computer networks, they often employ
proprietary systems and protocols. In many cases, only few
technical details are known about these protocols and even
the operators do not have access to the underlying protocol
specifications. One reason for this situation is that industrial
networks often comprise components of specialized manufac-
turers, each employing proprietary technology, for example, for
controlling turbines and chemical reactors. As a consequence,
conventional security techniques, such as intrusion detection
systems, are faced with an opaque network environment and
few to no information about the exchanged message formats
and protocol state machines.

The analysis of communication in industrial networks is
further obstructed by the use of binary protocols that rest
on compact binary structures for minimizing communication
overhead and delay. On the field level this frequently is the
case due to the limited resources of devices and legacy reasons.
Modbus messages, for instance, are limited to 256 bytes
as the first implementation has been designed for serial
communication over RS485 [39]. Similarly, modern protocols
on the control level also frequently rely on compact binary
structures. For example, five out of the six proprietary protocols
considered in our evaluation make use of binary fields and
structures.

In the absence of appropriate protocol dissectors and parsers,
an analysis of network traffic is only feasible if abstract
representations of the exchanged data are developed that are
capable of reflecting content and structure in a generic manner.
To tackle this problem, we model the communication between
two parties in a network as a sequence of incoming and
outgoing binary messages or more formally application-level
data units (ADUs). For stateful transport protocols, such as
TCP, these messages can be extracted using regular stream
reassembly [11]; for stateless protocols, such as UDP, these
messages simply refer to the application-level payloads. In the
following, we thus focus on techniques for analyzing binary
messages and identifying anomalous content.

An advantage of industrial environments over general-
purpose computer networks is that the scope of application is
often narrow and clearly defined. The industrial process itself
has precisely specified terms of operation and clear expectations
with respect to its outcome. This is predestinated for the use
of anomaly detection, where a model of normality is inferred
using machine learning techniques and deviations from the
model are flagged as anomalies. In order to apply machine
learning successfully in this context, however, a few things
have to be particularly considered [22, 54]:

High costs of error. Wrong classifications are particularly
critical in a security context. False-negatives may potentially
cause devastating harm to the attacked network, while a high
number of false-positives may render an intrusion detection
system useless [3]. An effective detector must therefore strive
for extremely low false-positive rates and simultaneously detect
attacks with high accuracy to keep the overall number of
misclassifications and the associated costs low.

Lack of training data. For a learning based detector it is of
tremendous importance to operate on sufficiently large training
datasets. Anomaly detection attempts to build a model of
normality to detect deviations thereof as attacks. This can
only succeed if most—preferably all—aspects of the network
protocol in question have been considered. Gathering enough
training data, however, is a major challenge and not always
possible. Next to benign data also malicious samples are
quintessential for calibrating and evaluating anomaly detection
methods in practice. A fact that is frequently overlooked.

2

Semantic gap. Anomaly detection does not discriminate be-
tween benign and malicious content, but reports deviations
from what has been learned as normal content. Any raised
alarm hence requires interpretation. To tighten the assumption
of anomalies being attacks, periodic retraining of the underlying
model is necessary as the notation of normality might change
over time. In practice, a linear-time approach for training thus
is highly beneficial.

Large variability of input data. Network traffic exhibits great
variability in its data and structure. An effective anomaly
detection system hence is required to carefully aggregate
information from large amounts of data over several days
or even weeks to model regular variance and filter out network
chaff. For industrial environments this aspect is less severe due
to the narrow scope and application of the networks.

III. ATTACK DETECTION IN PROPRIETARY PROTOCOLS

A large body of research on content-based intrusion detection
has shown that considering the mere presence of features in
network traffic often is superior over counting their occur-
rences [23, 63, 68, 71]. For example, particular strings might
already be indicative to spot network attacks at the application
layer. However, ignoring the frequency of features prematurely
discards valuable information. While this kind of data may
not be mandatory for the pure detection of attacks, we show
that it plays a key role in modeling normality and constructing
corresponding detection models, in particular, in proprietary
network environments.

Based on this observation, we develop a content-based
anomaly detector, ZOE, that in contrast to previous work is
capable of robustly handling binary and text-based protocols
likewise, without requiring any knowledge of the underlying
specification. To this end, we learn a model of normality from
observed network traffic and detect attacks as deviations thereof.
The important difference to related approaches is the use of
adequate ways of modeling unknown protocols. To achieve
this goal we rely on two key components, that seamlessly
intertwine:

A. Building Prototype Models. For constructing a model
of normality we automatically partition network traffic
into k groups of messages with similar content, thereby
approximating states of the underlying protocol. This
procedure is designed to not only separate message types
but also, to derive one prototype model per message type
in the process, which makes a classical separation of
clustering and subsequent learning of content models
unnecessary.

B. Reducing Noise. One of the main obstacles for analyzing
unknown protocols is “noise”, that is, seemingly random
data that hinders inferring suitable content models [see 23].
We address this problem by analyzing the occurrences of
features in each prototype model and carefully filtering
rare features using a frequency threshold t.

These two components form the basis of our detector, which
thus is parametrized by the number of message groups k and
the frequency threshold t:

ZOE(k, t)

The usage of one building block without the other can be
denoted as ZOE(1, ∗) for a detector using one global content
model rather than individual prototype models but different
thresholds for noise-reduction, and ZOE(∗, 0) for the use of
prototype models that however do not filter noise.

A. Building Prototype Models for Network Messages

The messages monitored in an industrial network can be
represented as strings of variable length. While this represen-
tation is ideal for conventional signature-based detection, for
building protocol models we however require a more structured
representation of the data. We thus map each message m
monitored in the network to a corresponding feature vector
x = φ(m): We extract all substrings of length n—so called
n-grams—from a message m and record their occurrences.
Each substring is associated with one dimension of the feature
space, such that a message m can be expressed as a vector of
substring occurrences. Formally, this map is defined as follows

φ : m→
(
φs(m)

)
s∈S with φs(m) = occ(s,m)

where the set S denotes all possible substrings of length n
and the function occ(s,m) represents the occurrence of the
substring s in the input message m. This can be implemented
as the frequency, the probability or a binary flag for a feature’s
presence. Using this mapping, we can translate a set of
messages {m1, . . . ,mN} to a set of vectors

X = {x1, . . .xN} with xi = φ(mi).

Depending on the length n, the vector space can be high
dimensional, as the number of considered substrings grows
exponentially with n. Fortunately, the resulting vectors are very
sparse and thus efficient data structures for handling sparse
data can be applied to operate in this vector space.

Based on this representation we can now proceed to learn
prototype models as a first cornerstone of our detector to cope
with high-entropy data in binary protocols. To learn models per
message type we build on methods from the field of clustering.
Unfortunately, clustering is a rather expensive task and many
algorithms are not suited for efficiently processing large
amounts of data. With ZOE we aim at an integrated solution that
breaks up the separation of clustering and subsequent learning
of content models. We thus build upon a linear-time algorithm
for approximating clusterings [1] that we have tailored to
network traffic analysis such that we can build prototype models
on-the-fly.

We first transform our network messages m to feature vectors
x as describe before, to build the input dataset X . Then, k
samples are drawn from the input data to initialize clusters
C1, . . . , Ck. For each following sample x ∈ X we measure

3

the similarity to each cluster and assign it to the cluster Cj
that has the closest proximity

j = arg max
i∈[1,k]

prox(x, Ci)

The overall similarity is calculated based on the input sample
x and all samples that belong to a cluster C:

prox: x, C → 1

|C|
∑
y∈C

sim(x,y)

The measure sim for two input samples may be either ap-
proximated by the dot product ˜sim: x,y→ x · y =

∑n
i=0 xiyi

or defined by the cosine similarity based on the l2-norm
‖x‖2 =

√∑n
i=0 x

2
i , that is,

sim: x,y→ x · y
‖x‖2‖y‖2

= cos(θ)

where θ denotes the angle between the vectors x and y.
While this requires slightly more effort to realize a linear-
time implementation, the normalized angle has the advantage
of actually being a formal distance metric.

For a sufficiently large input set X the algorithm above
approximates a precise clustering with high probability [1]. This
algorithmic requirement however also demands an especially
efficient way of handling the sets of messages as clusters.
We hence make the following two optimizations in our
implementation: First, we store counts of messages and their
substrings rather than the messages themselves in order to
save valuable working memory. For each cluster Ci we only
maintain the total number of all samples |Ci| contained in the
cluster and a vector of cumulative counts as prototype models:

Pi =
∑
y∈Ci

y

This suffices to compute the similarity between messages and
clusters as defined before, and can be used for efficient anomaly
detection in further follow (cf. Section III-B).

Second, due to the large amounts of network traffic we
operate on, storing and keeping track of substring counts already
poses a considerable challenge. Retaining exact counts simply
is not feasible as it requires to store all substrings (or at least
hashes thereof). We thus revert to probabilistic counting of sub-
strings. In particular, we make use of Count-Min Sketches [9],
a probabilistic data structure that is closely related to Bloom
filters [4] but additionally allows for counting occurrences
rather than answering membership queries only.

A Count-Min Sketch is defined as a w× d two-dimensional
array of numeric items of arbitrary size and precision, and
d hash functions hi that map input strings to numeric values in
the interval [0, w − 1]. To store a particular key-value pair or
increment the value for a key in the sketch, each hash function
is at first applied to the key, for instance a substring s ∈ S
appearing in message m. As depicted in Figure 1, the resulting
value is then used as position in the corresponding row. At these
offsets the stored numeric value is incremented by the provided
value v. Retrieving the value for a key works analogous: The

hash functions are applied to the key in order to determine
the numeric values associated to it. The minimum of these
values then recites the approximate true value—in our case the
approximate count of feature/substring s.

s

+v
+v

+v
+v

h1(s)

hd(s)
width w

de
pt

h
d

Fig. 1. Schematic depiction of a Count-Min Sketch [9]. The substring to be
added is denoted as s and is processed by d (the depth of the sketch) hash
functions hi to determine the position pi = hi(s) with i ∈ [1, d], p ∈ [0, w)
at which value v is added.

By construction, the approximated count ĉ retrieved from a
Count-Min Sketch is always larger or equal to the true count c,
meaning that the data structure will never underestimate a
stored value:

c ≤ ĉ ∀c ∈ c

where c is the vector of all values stored in the
Count-Min Sketch. Furthermore, for a width w = d eεe and
a depth d = dln 1

δ e it is guaranteed that the difference between
the true and approximated value is at most ε‖c‖1 with a
probability p of at least 1− δ [9]

ĉi ≤ ci + ε‖c‖1

In other words, the estimate of the Count-Min Sketch is
correct within ε times the number of items stored in the data
structure with a probability of p. Figures 2(a) and 2(b) show
the distribution of the relative frequency of occurrences of
strings in our evaluation data, once counted exactly and once
probabilistically using a Count-Min Sketch with ε = 0.0001
and δ = 0.01, resulting in a width w = 27,183 and the use of
d = 7 hash functions. Figure 2(c) shows the relative frequency
of the difference in value of these counts. Most values differ
by roughly 10 to 20 occurrences and none, as stated above, is
lower than the true value.

B. Noise-resilient Anomaly Detection

As a second building block for reliably detecting attacks
in proprietary network protocols, we propose an extension to
content-based anomaly detection made possible by prototype
models introduced in the previous section. Language models,
such as n-grams [e.g., 56, 66, 68], have frequently been used
for attack detection and have proven impressively effective for
text-based data [e.g., 45, 66–68]. For binary and high-entropy
data, however, such models are considered mostly impractical
by the research community so far [23] and have been widely
discarded for application in industrial networks.

The main reason why language models perform worse in
this environment is founded in the density of the message data.

4

0 1000 2000 3000 4000 5000
Number of occurrences

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
el

at
iv

e
fr

eq
ue

nc
y

(a) Exact counting

0 1000 2000 3000 4000 5000
Number of occurrences

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
el

at
iv

e
fr

eq
ue

nc
y

(b) Probabilistic counting (c) Exact vs probabilistic counting

Fig. 2. Histograms of 3-gram occurrences in network traffic: a) exact counting, b) probabilistic counting, c) the difference between both approaches.

The density is defined as the ratio of the number of unique
occurrences of a feature/substring s to the total number of all
possible elements S [71]. This ratio significantly influences
the quality of the resulting model. In case of high entropy,
as induced by binary network protocols, a model gets so
“packed” that it becomes difficult to differentiate between two
classes (benign and malicious messages) and renders mere
binary embedding impractical [23, 68]. Count embeddings,
on the other hand, have been shown to be less effective
when used as a drop-in replacement in an otherwise identical
setting [23, 63, 68, 71].

Rather than discarding this information altogether, we use
the number of occurrences to filter relevant from irrelevant
information. Note, that we record the frequency f of samples
in which features/substrings s ∈ S occur rather than the total
count of s in the complete data set. Setting f in relation to the
total number of samples N formally yields the well-established
document frequency measure df = f

N . The prototype models
Pi that we have established in the previous section represent
exactly these feature frequencies across training samples
iff function occ(a,m) is defined to report the existence of
substring s in input message m. Detection schemes based on
binary embeddings can thus be directly derived from prototype
models Pi without additional training.

By introducing a threshold t we now prune features that
occur in less than t input samples that have been associated
with a cluster and thereby effectively discard noise from the
training data. Models Mi can hence be interpreted as sets of
features that are considered for detection and together form
the overall content model used by ZOE:

M = {M1, . . . ,Mk} with Mi = {s ∈ S | Pi,a ≥ t}

This allows us to revert to detection using the (implicit)
binary embedding based on the remaining, most relevant
features only. This scheme offers two main advantages: First,
it allows to reduce the set of benign features to those that
appear more than t times, and thus significantly reduces the
size of the model as features associated with a value of 0
are not explicitly stored. Furthermore, this limits an attacker’s
reach of play when mimicking benign messages (Section V-E).
Second, for production use and to improve runtime performance

of the final detector this binarized Count-Min Sketch can be
transformed into a compact Bloom filter that offers a higher
accuracy than established methods [68] with the same memory
footprint (Section V).

In order to determine the overall detection using k models
ZOE considers the score of the model with the highest
resemblance to the message m in question. With a scoring
function d that yields low values for known/benign messages
and high values for anomalies, this formally translates to
choosing the minimum score of k models:

score : m,M→ min
i

d(m,Mi)

In accordance to d and using an overall threshold T , a
message is considered malicious for score(m,M) ≥ T and
benign otherwise. Different schemes on how to choose scoring
function d and how to adjust and interpret the detection
threshold are discussed in the subsequent section.

C. Adjusting the Detector

One particularly effective way of evaluating a message m
is to determine the ratio of known or unknown features to the
total number l of features in the message:

d1 : m,M → 1− 1

l

∑
s∈M

occ(s,m)

While this distance has been shown to be effective in
a number of applications [23, 49, 68, 71] interpreting the
threshold for such a scoring function is rather difficult in
practice. Different measures based on the number of bytes
covered by the model, for instance, however often are not
performant enough to match up. The benefit of the latter is
that the operator of the intrusion detection system is able to
a) more naturally specify the necessary threshold T as the
number of previously unobserved bytes a message may contain
before a message/packet is considered to be part of an attack,
and analogous b) intuitively interpret the resulting scores as
the portion of unknown content in bytes.

d2 : m,M → cov(m,M)

The function cov(m,M) returns the number of bytes in m
covered by model M . Normalizing to the length of the

5

TABLE I
DATASET AND PROTOCOLS USED FOR THE EVALUATION OF ZOE.

Generation Mining

Protocol P1 P2 P3 P4 P5 P6
2000 2069 4241 2010 2070 PROFINET IO

TCP ()
UDP
Binary
Text

Size 2,542MiB 219MiB 18,506MiB 2,506MiB 1.6MiB 1,878MiB
Count 7,032,323msgs 310,205msgs 13,046,151msgs 16,024,175packets 33,329packets 13,957,589packets

message is explicitly avoided. To a certain extent this takes
away the flexibility of the model but most importantly also
significantly raises the bar for an attacker to perform mimicry
attacks (cf. Section V-E).

IV. DATASETS

For evaluating our approach under realistic conditions, we
have partnered with a large European energy producer. In
particular, we have collected roughly 210GiB of raw network
data during 6 days at a large power plant (total 1,900MW),
and the operation of a coal mining facility. At the power plant
we have recorded network traffic at the control level of a power
unit producing 500MW. Our recording period covers a ramp-
up phase as well as normal operation of the unit. From this
we have extracted the five most prominent protocols, all of
which are proprietary and publically undocumented1. Through
manual analysis we however were able to attribute these to a
large plant manufacturer. In order to provide a comprehensive
study on protocols that occur in industrial networks the data
recording at the coal mining facility targets PROFINET IO at the
field level. In total we have recorded communication between
92,700 unique devices in an authentic production environment.
Table I summarizes the gathered data.

Protocols P1–P3 build on TCP while P4 & P5 use UDP
for direct communication. PROFINET IO, on the other hand,
is situated somewhat differently: While TCP/IP is used for
the parameterization and configuration, real-time messages are
exchanged on a separate channel that does not use the Internet
protocol at all. Although PROFINET IO traffic can be easily
parsed and therefore reliably filtered, there are no protocol
parsers publicly available for the remaining traffic from the
power plant. For these protocols we hence resort to filtering
the network traffic based on IP ports, but explicitly consider
relations between communicating entities to sanitize the data.
For TCP traffic we additionally reassemble network streams,
such that we are able to evaluate ZOE based on complete
“messages” (approximated as consecutive, unidirectional traffic)
for P1–P3, datagrams for P4 & P5, and PROFINET IO packets.
All in all, this gives us 46.7GiB of raw data for our evaluation.

Furthermore, these different protocols show highly diverse
structure. While protocols P1 and P2 seem to exclusively use

1Consequently, publicly available tools such as Wireshark are not capable
of parsing these protocol beyond the TCP/UDP packet structure.

either text-based or binary-based data for their communication,
protocols P3–P5 use a mixture of both. The latter appear to
mainly consist of binary structures that additionally transmit
string-based (printable) data. As these strings exhibit strong
structure that may be interpreted as another protocol on top
of the base protocol we assign these to both sub-groups.
PROFINET IO then again is strictly based on binary data.
Additionally, server and client communication often vary
significantly for these protocols. To account for this difference
in composition and structure we thus split the individual
protocol subsets in incoming and outgoing traffic and analyze
these individually in our evaluation. UDP and PROFINET IO
traffic is not effected by this pre-processing step.

A. Attack Datasets

Effective anomaly detection can only succeed with a carefully
chosen parametrization of the detector. This requires benign
traffic for building the content model, but also attack samples to
validate the chosen settings and estimate the expected detection
performance [54]. As recordings of such attacks in industrial
environments and for proprietary protocols in particular are
naturally rare, we have developed a tool for the automatic
generation of network attacks against unknown protocols. This
tool provides us with a total number of 3,899 unique attacks for
each protocol P1–P6, where we limit the payloads to 256 bytes
in size. By restricting the length of the attack strings, we ensure
that these do not outweigh the benign content and hence better
blend in.

In particular, the tool mimics a protocol based on observed
network traffic as close as possible and injects attack strings,
that range from program code (e.g., shellcodes, ROP chains,
PLC instructions), over scripts fragments (e.g., Perl scripts)
to random data, at positions containing variable input. To this
end, we first group similar network messages using clustering
and then derive generic rules that describe the structure of the
messages in each cluster (Section IV-A1). Second, we generate
attack strings with different encodings and obfuscations to
populate variable fields of the derived rules (Section IV-A2).

1) Inferring Protocol Rules: For industrial facilities we
usually do not have the specification of the used network
protocols on hand and neither does the operator, as vendors
normally do not share product details. Consequently, we are
required to automatically infer protocol models based on

6

network traffic only [10, 21, 32, 34]. To this end we build
upon work by Krueger et al. [32] and Gascon et al. [21] to
derive rules for individual messages.

In a first step, we identify messages that have the same
structures using off-the-shelf k-means clustering. Similarly
to the method described in Section III-A network messages
cannot be directly used at this point, but are embedded into
vector space first. We thus again operate on an input set
X = {x1, . . .xN} yield by the feature map φ with a binary
embedding of substrings s ∈ S. However, as inferring protocol
models is much more involved than simply deriving states,
additional statistical tests are applied to filter relevant from
irrelevant substrings/features and to avoid an overly populated
vector space that might hinder the clustering process. We
hence subdivide the feature space in constant, mutable, and
volatile parts by applying a binomial test to each feature [31].
A value close to 0 indicates volatile features while a frequency
of 1 refers to constant features. Neither volatile nor constant
features are particular valuable for discriminating messages
in a protocol—think of a protocol’s magic values or nonces.
We hence reject all features that do not meet a statistical
significance level of α = 0.05 [25] before clustering the inputs.

Subsequently, we derive rules that describe all messages in a
cluster which can then be used to generate new messages that
comply with the format of that cluster. To do so we consider
the original messages in each cluster, rather than the reduced
representation in feature space and pair-wise align these using
an extended version of the Needleman-Wunsch algorithm [40].
The resulting rules consist of fixed bytes that appear at the same
position in each message of the cluster and variable fields that
may contain different byte sequences from message to message.
Table II shows an example for a set of simple messages found
in our datasets.

TABLE II
RULE INFERENCE FOR A SET OF SIMPLE MESSAGES.

Message 1 \x00\x1aGetVal "N2HAJ22CT000 XH24" \xff
Message 2 \x00\x1aGetVal "N2HAJ22DT500 XR01" \x00

...
...

Message n \x00\x1aGetVal "N2HAJ31AA100 XB02" \xff

Rule \x00\x1aGetVal "N2HAJ 00 X "

It is clear to see that our approach is not capable of learning
the exact protocol specification but approximates it based on
the network traffic on hand. The depicted cluster contains
messages that apparently transmit a command string GetVal to
retrieve sensor values from a particular device. Furthermore, it
contains the length of the transmitted string as 2 byte integer
in the front and another unspecified flag (presumably a high
and low value) at the end. Within this cluster only individual
parts of the device identifier and the binary flag at the end
change such that the remaining parts are considered constant
by the algorithm. For populating a valid network message with
attack payloads this however is sufficient.

2) Generation of Attack Messages: With the inferred rules
as detailed descriptions of protocol messages at our disposal
we can now produce authentic network traffic that contains
arbitrary attack payloads. For a wide range of different
attacks we query Metasploit for payloads and encoders—simple
obfuscations that, for instance, encrypt scripts with a simple
xor operation, or map program code to printable characters.
To generate attack messages we proceed as follows: For each
attack string we randomly choose an existing network message.
The corresponding rule then allows us to replace variable
fields within this message at will. For our experiments we
choose exactly one at random and inject the attack payload.
The remaining (constant and variable) fields remain unchanged.
Figure 3 depicts this simple scheme.

Generated Message

\x00\x1aGetVal "N2HAJ31AA100 X ... " \xff

Attack Payload

\x03\x00\x00\x16\x11\xe0...\xc0\x01\x0a

Encoder/ Obfuscation

Fig. 3. Schematic depiction of the generation of network attacks.

V. EVALUATION

We empirically evaluate ZOE based on the six industrial
protocols described in the previous section and conduct a
number of experiments that examine the different aspects of
our method: First, we demonstrate the overall detection perfor-
mance of our method as proposed in the paper (Section V-A).
Second, the influence of ZOE’s de-noising capabilities as
well as the impact of message-specific prototype models is
studied (Section V-B & V-C). Third, we compare our method
with related approaches (Section V-D) before, as a final
experiment, we investigate the feasibility of evasion attacks
in the form of polymorphic blending attacks against ZOE
(Section V-E).

In the course of this evaluation we describe detection per-
formances with the aid of the receiver operator characteristics
(ROC) and corresponding ROC curves. These curves plot the
true-positive rate over the false-positive rate of a detector for
different thresholds [6, 16]. Additionally, we use the area under
the ROC curve (AUC) as a single continuous measure for the
detection performance that yields a minimal and maximal value
of 0.0 and 1.0, respectively.

Figure 4 illustrates a ROC curve that shows the full scale
of false-positives in the interval [0.0, 1.0] on the x-axis or
0% to 100%. The AUC can hence be interpreted as a measure
of how steep the curve increase towards higher true-positive
rates. As measuring the AUC for the full range often is of
little expressiveness (performances for low false-positives are
poorly represented) we use the bounded AUC. That is the area
under the ROC curve up to a threshold b of false-positives
and normalized to that value: AUC(b). For the field of attack
detection it is particular important to push forward detection
with few false-positives.

7

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
tiv

e
ra

te

ROC
AUC(0.5)

Fig. 4. Exemplary ROC curve with the bounded AUC (area under the curve) for
a false-positive rate of 0.5 or 50%, respectively. Setting this bound allows to
zoom in on the critical range of low false-positives that is particular important
for an detector.

For training and testing individual detectors we create
strictly separated datasets that do not overlap. 75% randomly
chosen samples are used as known data for training and the
remaining 25% as unknown data for testing. This partitioning
is applied to benign and malicious samples likewise, and is
repeated for 10 experiments which are averaged to determine
the overall detection performance. The parameters for the
detector are chosen solely based on the results obtained on
training data and only then, this configuration is used to evaluate
the performance on the testing dataset.

A. Overall Detection Performance of ZOE

We begin with demonstrating our method’s detection per-
formance for the six industrial protocols we have collected.
Figure 5 shows the results for our detector parametrizes with
different de-noising thresholds and numbers of prototype mod-
els using 5-grams. The y-axis shows the detection performance
as AUC limited to different thresholds of false-positives, over
the individual protocols on the x-axis. ZOE performs very
well across different protocols and detection performance only
differs in nuances. The parametrization of the detection however
is crucial as we demonstrate in the following sections. For
protocol P3 (outgoing), for instance, our experiments show that
at least 4 different prototype models are needed to enable good
detection. Subsequently, we thus inspect the influence of the
individual components of ZOE in detail and use protocol P3
as recurring example.

P1
 (in

)

P1
 (o

ut)

P2
 (in

)

P2
 (o

ut)

P3
 (in

)

P3
 (o

ut) P4

P5

P6

0.80

0.85

0.90

0.95

1.00

De
te

ct
io

n
pe

rfo
rm

an
ce

AUC(0.01)
AUC(0.001)

Fig. 5. Detection performance of ZOE for the protocols P1 to P6.

B. De-noising Content Models

Next, we evaluate the impact of different thresholds t used
with ZOE to demonstrate its de-noising capabilities. We hence
parametrize ZOE(1, t) with thresholds t ∈ [20, 100] with a
granularity of 5. Figure 6 shows the results for protocol P3. At
a threshold t = 35 the detector reaches its peak performance
with an AUC(0.0001) of 0.8 (light gray line) and a true-positive
rate of 0.978, meaning that 97.8% of the attack patterns are
detected with at most 1 false positive out of 10,000 network
messages. In comparison to no de-noising (t = 0) we record an
tremendous improvement that clearly shows that pre-filtering
the features used for detection is of the essence for effective
attack detection in binary protocols.

20 40 60 80 100
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
pe

rf
or

m
an

ce

AUC(0.01)
AUC(0.001)
AUC(0.0001)

Fig. 6. Detection performance of ZOE(1, t) for varying thresholds t. The
dashed line indicates the threshold yielding the highest detection performance
(t = 35).

Moreover, it is interesting to see that the detection per-
formance shoots up at thresholds of 20 to 25, peaks at
t = 35 and flattens out towards higher values. This underlines
the importance of a thorough evaluation with the aid of a
comprehensive set of attack samples.

C. Message-specific Prototype Models

In this section we bring together the two key components of
ZOE and study the influence of using multiple prototype models
on the detection performance. Furthermore, we explicitly
highlight the additional improvement in the eminently important
range of low false-positive rates.

To this end, we train our detector for different numbers
of prototype models k and thresholds t in order to calibrate
the detector as described in the previous section. The best
configuration with both components enabled, ZOE(4, 50), is
shown as a ROC curve in Figure 7 in relation the best
detector without prototype models, ZOE(1, 35). Note, that
the x-axis (false-positive rates) shows a logarithmic scale to
better emphasize the improvement, that the detection specific
to message types entails. Such enhancements in detection
performance are of great importance for the application of
the detector in production and limits the costs of false-alarms.

D. Comparison with Related Approaches

Ultimately, we conduct a comparison of ZOE to Ana-
gram [68], a content-based approach using higher-order
n-grams (n ≥ 3). While it originally has been designed for

8

10 5 2 × 10 5

False-positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

-p
os

iti
ve

 ra
te

ZOE(4, 50)
ZOE(1, 35)

Fig. 7. Detection performance of two configurations of ZOE: First, a global
content-model with (1, 35) and second, multiple prototype models with (4, 50).
The latter clearly improves upon the other in the critical region of low false-
positive rates.

detecting attacks in HTTP traffic it has proven effective for
various other protocols as well [23, 71]. Previous research has
shown that it even works well for certain binary protocols with
a limited set of different message formats and simple structure
such as Modbus [23].

Anagram is similar to the most basic configuration of
our detector, ZOE(1, 0), that neither make use of prototype
models k = 1 nor de-noising of the content models t = 0.
In order to maintain comparability in this experiment we
make use of filters/sketches that have approximately the same
number of items for storing content features. We hence choose
ε = 0.0000006 and p = 0.99 for Count-Min Sketches in order
to match the 225 items large Bloom filter we use for Anagram
in this experiment. We also make use of d1 as distance measure
for a direct comparison and choose ZOE’s best parametrization
with k = 4 and t = 50.

TABLE III
DETECTION PERFORMANCE ZOE AND ANAGRAM FOR PROTOCOL P3.

Detection performance

Method AUC(0.01) AUC(0.001) AUC(0.0001)

ZOE 0.9984 0.9844 0.8463
Anagram 0.1515 0.0408 0.0002

Table III shows the detection performance of both as
AUC bounded to different thresholds of false-positives for
protocol P3. While ZOE yields high performance values down
to a false-positive rates of 0.0001, Anagram is not able to
compete and only achieves an AUC(0.01) of 0.15, which even
reduces to 0.04 for AUC(0.001). This is founded in the tight
connection of structure and data found in binary protocols,
which conventional content-based anomaly detection is not
designed to operate on.

In the ROC curve shown in Figure 8 the difference becomes
even more apparent. Again, a logarithmic scale has been chosen
to highlight the importance of low false-positive rates for
intrusion detection. ZOE yields a true-positive rate of 0.971 for
as few as 0.002% false-positives, meaning that, 97.1% of the
attacks are correctly detected with only 2 false-alarms out of

100,000 messages. Anagram, on the other hand, only detects
16.5% with an 500× higher false-positive rate of 1%. These
results show that ZOE not only outperforms Anagram by an
order of magnitude in sheer detection performance, but also in
terms of false-positive rates.

10 6 10 5 10 4 10 3 10 2

False-positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

-p
os

iti
ve

 ra
te

ZOE
Anagram

Fig. 8. Detection performance of ZOE and Anagram side-by-side as ROC
curves on a logarithmic scale to better emphasize the extremely small false-
positive rates achieved by our method.

E. Evasion

In order to bypass content-based anomaly detection an
adversary might attempt to mimic benign content and slip
by attacks. We thus study the effects of a particular kind of
evasion attack—polymorphic blending—on our detector.

Mutation and transformation attacks have a long-standing
history for evading intrusion detection systems on different
levels [e.g., 18, 19, 44, 51, 55, 57, 62]. Polymorphic blending
attacks are a particular effective tool against content-based
intrusion detection [19]. Although generating these has been
proven to be NP-hard [18], attackers can resort to heuristics to
provide good approximations, for instance, using iterative hill
climbing. This method from mathematical optimization starts
off with an initial solution (the original attack) and iteratively
improves it according to a target function (the scoring function
of the detector).

Two aspects are key to the success of the attack: First, the
use of lower-order n-grams and second, a rich and extensive
model containing large amounts of benign features that can
be utilized by the attacker. The latter can also be expressed
by the density and variability of the training data set [71] that
directly influence the richness of the model. Note, that using
higher-order n-grams (n ≥ 3) also increases the complexity of
the model due to rare but apparently benign features. With
ZOE we address both aspects by a) using substrings of length
n = 5 and b) pruning rare features, thus limiting the reach of
play of an attacker.

In this final experiment we generate 32,640 blended attack
instances per epoch over a total of 100 epochs. Additionally,
after each iteration we select the 10 best performing instances
for further mutations. This results in 3,234,624 variations that
are tested for each attack. Figure 9 shows the results of a
single experiment for a number of different thresholds of ZOE.
The gray-scale level decreases with higher thresholds from
black (t = 35) to light gray (t = 50). The higher the detection
score to which the individual curves converge to, the more

9

robust the detector is against polymorphic blending attacks.
This clearly shows that narrowing down the set of features that
are used in the content model (increasing the threshold) is not
only beneficial for the detection performance itself but also for
improving the resistance against mutation attacks.

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
sc

or
e

t = 50
t = 45
t = 40
t = 35

Fig. 9. Polymorphic blending attacks based on 3,234,624 mutations over
100 epochs for different thresholds t used with ZOE.

The ripples observed in the second half of the curves indicate
the point in time when the algorithm has detected a potential
local minimum and attempts to escape by performing a small
number of random mutation at once.

VI. RELATED WORK

Anomaly detection has a long standing history in computer
security research and in the scope of network-based intrusion
detection in particular [e.g., 26, 45, 48, 65–68]. The uprise
of SCADA security has again fostered the development of
new methods and has extended the scope such that we
differentiate between the following, orthogonal strains of
research: A) content-based attack detection, B) detection based
on network characteristics, and C) detection by modeling
physical processes. Subsequently, we review related work with
respect to these different directions with a special focus on
industrial control systems. Due to the proximity to our approach
we however also include works on content-based anomaly
detection in general-purpose networks.

A. Attack detection based on Content

A large body of research deals with the in-depth analysis
of protocol contents. This includes the identification [13],
analysis [41, 70] and reverse-engineering [8, 35] of protocols,
but also the detection of shellcodes in network streams [46, 53].
ZOE in contrast strives for a less specific approximation of
protocols tailored to the purpose of attack detection, and aims at
a wider range of attacks than shellcodes and abnormal behavior
in general.

For this purpose language models such as n-grams have
been proven to be very effective [45, 48, 56, 66–68]. Early
approaches [30, 66] build distributions of byte frequency as
a notion of normality to detect attacks as deviation of these
histograms. PAYL [67] extends these to the use of 2-grams,
before Wang et al. [68] propose Anagram and establish the
use of higher-order n-grams (n ≥ 3). Similar to our approach
Anagram stores a sparse vector representation of content

data in a probabilistic data structure. Recently, these data
structures have also been used for protocol-specific anomaly
detection (in combination with LTSM networks) for SCADA
systems [17]. Rieck and Laskov [48] address the use of higher-
order n-grams with a representation as Trie that allows for the
efficient computation of distances of such vector representations.
Spectogram [56], on the other hand, extracts n-grams from
HTTP request and models these as a mixture of Markov chains
and thus avoids storing observed features altogether. Moreover,
it also employs a variant of clustering to control the number of
Markov models. While similar in spirit to ZOE, both approaches
operate on an entirely different scale.

Wressnegger et al. [71] and Hadžiosmanović et al. [23]
provide a more general overview of content-based detection
based on n-grams. The latter however focuses on industrial
control systems and inspects the suitability of various detection
methods such as POSEIDON [5] and Anagram [68]. In con-
cept similar to PAYL, Düssel et al. [14] presents an anomaly
detection system based on n-grams using distance metrics for
industrial networks. This certainly shares the motivation with
ZOE but does not pursue any advanced detection strategies
to cope with proprietary binary protocols found in large
industrial facilities.

B. Attack Detection based on Network Characteristics

Alternatively to evaluating the content of network packets, re-
searchers have considered sequences of network packets and the
relationships of the communicating devices. These approaches
operate on a complementary level of network traffic compared
to ZOE. Yang et al. [73] present an intrusion detection system
that uses an auto-associative kernel regression model coupled
with the statistical probability ratio test. Schuster et al. [52]
apply a one-class SVM on a number of traces from real-
world industrial traffic from different industrial control sys-
tems. Koutsandria et al. [28] and Parvania et al. [42] propose
to extend intrusion detection systems for SCADA systems
by combining traditional signature-based approaches and
communication rules, while considering physical limits of the
involved devices. Fovino et al. [20] propose a new state-based
intrusion detection system for SCADA systems that combines
traditional, signature-based techniques with a state-analysis
technique. Udd et al. [60] extend the network security platform
Bro [59] to support a particular SCADA protocol.

C. Attack Detection by Modeling Physical Processes

Several researchers attempt to model the physical pro-
cess of industrial facilities which again is orthogonal to
our approach. Teixeira et al. [58], Alajlouni and Rao [2], and
Vukovic and Dán [64], for instance, model system state estima-
tors and analyze their security properties and detect emerging
anomalies. Luchs and Doerr [36] have recently presented an
anomaly detection scheme that makes use of envelope escala-
tion for sensor readings. Hadžiosmanović et al. [24] model the
semantics of process variables while Mo et al. [38] propose a
model-based technique to detect integrity attacks on the sensors
of cyber-physical system.

10

Another strain of research formally describes the un-
derlying process. Pasqualetti et al. [43] propose a mathe-
matical framework for modeling cyber-physical systems
and attacks. Wang et al. [69] utilizes a detection scheme
based on relation-graphs to detect stealthy false-data in-
jection attacks, while Miao et al. [37] use linear combi-
nations of coding sensor outputs to detect those attacks.
Do et al. [12] formulate the attack problem as transient
changes in stochastic-dynamical systems involving unknown
system states. Rocchetto and Tippenhauer [50], on the other
hand, use formal modeling to discover potential attacks on
cyber-physical systems.

Other model-based approaches deal with the detection of
manipulated physical data—frequently using clustering tech-
niques: Krotofil et al. [29] propose a process-aware approach
to detect sensor signal manipulations using the correlation
entropy in clusters of related sensors. Kiss et al. [27] detect
cyber attacks targeting measurements using a Gaussian mixture
model to cluster sensor measurements. Urbina et al. [61] study
the physics-based detection of attacks in control systems and
develop an adaptive adversary model as well as a new metric
for measuring the impact of stealthy attacks.

VII. CONCLUSION

While the use of n-grams has been proven very effective
for content-based anomaly detection of text-based network
protocols [23, 65–67, 71], for binary-based protocols these
however are considered mostly impractical [23]. For industrial
environments and SCADA systems the research community
has thus moved towards alternative schemes, such as modelling
the appearance of network traffic or the underlying physical
process.

In contrast to prior believe we show that content-based
anomaly detection very well is applicable to protocols with
high-entropy data. We observe that the frequency values of
features carry valuable information for modeling normality
and constructing detection models—especially for proprietary
binary protocol. The combination of learning message-type
specific prototype models and de-noising these enables effective
attack detection with particularly few false-positives.

In an extensive evaluation using 210GiB of network traffic
from two industrial facilities, we show that ZOE is able
to significantly improve detection performance compared
to related approaches. As an example, our method detects
97.1% of the attacks in our dataset with as few as 2 false-alarms
out of 100,000 messages, while Anagram only yields 16.5%
with an 500× higher false-positive rate of 1%. Moreover,
we study the influence of polymophic blending attacks on
our detector and show that ZOE’s de-noising functionality
effectively limits an attacker’s reach of play and improves the
resistance against this type of mutation attacks.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding from the Ger-
man Federal Ministry of Education and Research (BMBF)
under the project INDI (FKZ 16KIS0154K).

REFERENCES
[1] C. Aggarwal. A framework for clustering massive-domain data streams.

In Proc. of International Conference on Data Engineering (ICDE), 2009.
[2] S. Alajlouni and V. Rao. Anomaly detection in liquid pipelines

using modeling, co-simulation and dynamical estimation. In Proc. of
International Conference on Critical Infrastructure Protection (ICCIP),
2013.

[3] S. Axelsson. The base-rate fallacy and its implications for the difficulty
of intrusion detection. In Proc. of ACM Conference on Computer and
Communications Security (CCS), 1999.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communication of the ACM, 13(7), 1970.

[5] D. Bolzoni, S. Etalle, and P. Hartel. POSEIDON: A 2-tier anomaly-
based network intrusion detection system. In Proc. of IEEE International
Workshop on Information Assurance (IWIA), 2006.

[6] A. P. Bradley. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7), 1997.

[7] A. Cherepanov. Win32/industroyer – a new threat for industrial control
systems. Technical report, ESET, 2017.

[8] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex:
Protocol specification extraction. In Proc. of IEEE Symposium on Security
and Privacy, 2009.

[9] G. Cormode and S. Muthukrishnan. Approximating data with the count-
min sketch. Journal of IEEE Software, 29(1), 2012.

[10] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz. Protocol-independent
adaptive replay of application dialog. In Proc. of Network and Distributed
System Security Symposium (NDSS), 2006.

[11] S. Dharmapurikar and V. Paxson. Robus TCP reassembly in the presence
of adversaries. In Proc. of USENIX Security Symposium, 2005.

[12] V. L. Do, L. Fillatre, and I. V. Nikiforov. A statistical method for
detecting cyber/physical attacks on SCADA systems. In Proc. of IEEE
Conference on Control Applications (CCA), 2014.

[13] H. Dreger, M. Mai, A. Feldmann, V. Paxson, and R. Sommer. Dynamic
application-layer protocol analysis for network intrusion detection. In
Proc. of USENIX Security Symposium, 2006.

[14] P. Düssel, C. Gehl, P. Laskov, J. Bußer, C. Störmann, and J. Kästner.
Cyber-critical infrastructure protection using real-time payload-based
anomaly detection. In Proc. of of Critical Information Infrastructures
Security CRITIS, 2009.

[15] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet dossier. Symantec
Corporation, 2011.

[16] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27(8), 2006.

[17] C. Feng, T. Li, and D. Chana. Multi-level anomaly detection in industrial
control systems via package signatures and lstm networks. In Proc. of
Conference on Dependable Systems and Networks (DSN), 2017.

[18] P. Fogla and W. Lee. Evading network anomaly detection systems:
Formal reasoning and practical techniques. In Proc. of ACM Conference
on Computer and Communications Security (CCS), 2006.

[19] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic
blending attacks. In Proc. of USENIX Security Symposium, 2006.

[20] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera.
Modbus/dnp3 state-based intrusion detection system. In Proc. of IEEE
International Conference on Advanced Information Networking and
Applications (AINA), 2010.

[21] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck. Pulsar:
Stateful black-box fuzzing of proprietary network protocols. In Proc. of
Int. Conference on Security and Privacy in Communication Networks
(SECURECOMM), 2015.

[22] C. Gates and C. Taylor. Challenging the anomaly detection paradigm: A
provocative discussion. In Proc. of New Security Paradigms Workshop
(NSPW), 2006.

[23] D. Hadžiosmanović, L. Simionato, D. Bolzoni, E. Zambon, and S. Etalle.
N-gram against the machine: On the feasibility of the n-gram network
analysis for binary protocols. In Proc. of International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2012.

[24] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel. Through
the eye of the PLC: semantic security monitoring for industrial processes.
In Proc. of Annual Computer Security Applications Conference (ACSAC),
2014.

[25] S. Holm. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics, 6, 1979.

11

[26] K. L. Ingham and H. Inoue. Comparing anomaly detection techniques
for HTTP. In Proc. of International Symposium on Recent Advances in
Intrusion Detection (RAID), 2007.

[27] I. Kiss, B. Genge, and P. Haller. A clustering-based approach to detect
cyber attacks in process control systems. In Proc. of IEEE International
Conference on Industrial Informatics (INDIN), 2015.

[28] G. Koutsandria, V. Muthukumar, M. Parvania, S. Peisert, C. McParland,
and A. Scaglione. A hybrid network IDS for protective digital relays in
the power transmission grid. In Proc. of IEEE International Conference
on Smart Grid Communications (SmartGridComm), 2014.

[29] M. Krotofil, J. Larsen, and D. Gollmann. The process matters: Ensuring
data veracity in cyber-physical systems. In Proc. of ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2015.

[30] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection
for network intrusion detection. In Proc. of ACM Symposium on Applied
Computing (SAC), 2002.

[31] T. Krueger, N. Kraemer, and K. Rieck. ASAP: Automatic semantics-
aware analysis of network payloads. In Proc. of ECML Workshop on
Privacy and Security Issues in Machine Learning, 2010.

[32] T. Krueger, H. Gascon, N. Kraemer, and K. Rieck. Learning stateful
models for network honeypots. In Proc. of ACM Workshop on Artificial
Intelligence and Security (AISEC), 2012.

[33] K. Lab. The DUQU 2.0 – technical details. Technical report, Kaspersky
Lab, 2015.

[34] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An automated script
generation tool for honeyd. In Proc. of Annual Computer Security
Applications Conference (ACSAC), 2005.

[35] Z. Lin, X. Jiang, and D. Xu. Automatic protocol format reverse
engineering through context-aware monitored execution. In Proc. of
Network and Distributed System Security Symposium (NDSS), 2008.

[36] M. Luchs and C. Doerr. Last line of defense: A novel ids approach against
advanced threats in industrial control systems. In Proc. of Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2017.

[37] F. Miao, Q. Zhu, M. Pajic, and G. J. Pappas. Coding sensor outputs for
injection attacks detection. In Proc. of IEEE Conference on Decision
and Control (CDC), 2014.

[38] Y. Mo, R. Chabukswar, and B. Sinopoli. Detecting integrity attacks on
SCADA systems. IEEE Transactions on Control Systems Technology
(TCST), 22(4), 2014.

[39] Modbus.org. Modbus application protocol specification v1.1b3. Technical
report, Modbus.org, 2012.

[40] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48, 1970.

[41] R. Pang, V. Paxson, R. Sommer, and L. L. Peterson. binpac: a yacc for
writing application protocol parsers. In Proc. of Internet Measurement
Conference (IMC), 2006.

[42] M. Parvania, G. Koutsandria, V. Muthukumar, S. Peisert, C. McParland,
and A. Scaglione. Hybrid control network intrusion detection systems
for automated power distribution systems. In Proc. of Conference on
Dependable Systems and Networks (DSN), 2014.

[43] F. Pasqualetti, F. Dörfler, and F. Bullo. Attack detection and identification
in cyber-physical systems. IEEE Transactions on Automatic Control, 58
(11), 2013.

[44] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. I. Sharif. Misleading
worm signature generators using deliberate noise injection. In Proc. of
IEEE Symposium on Security and Privacy, 2006.

[45] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. McPAD: A
multiple classifier system for accurate payload-based anomaly detection.
Computer Networks, 5(6), 2009.

[46] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Compre-
hensive shellcode detection using runtime heuristics. In Proc. of Annual
Computer Security Applications Conference (ACSAC), 2010.

[47] S. S. Response. W32.duqu – the precursor to the next stuxnet. Technical
report, Symantec, 2011.

[48] K. Rieck and P. Laskov. Detecting unknown network attacks using
language models. In Proc. of Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2006.

[49] K. Rieck and C. Wressnegger. Harry: A tool for measuring string
similarity. Journal of Machine Learning Research (JMLR), 17(9), 2016.

[50] M. Rocchetto and N. O. Tippenhauer. Towards formal security analysis
of industrial control systems. In Proc. of ACM Asia Conference on
Computer and Communications Security (ASIA CCS), 2017.

[51] S. Rubin, S. Jha, and B. P. Miller. Automatic generation and analysis

of NIDS attacks. In Proc. of Annual Computer Security Applications
Conference (ACSAC), 2004.

[52] F. Schuster, A. Paul, R. Rietz, and H. König. Potentials of using one-class
SVM for detecting protocol-specific anomalies in industrial networks. In
Proc. of IEEE Symposium Series on Computational Intelligence (SSCI),
2015.

[53] K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos. ShellOS: Enabling
fast detection and forensic analysis of code injection attacks. In Proc. of
USENIX Security Symposium, 2011.

[54] R. Sommer and V. Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In Proc. of IEEE Symposium
on Security and Privacy, 2010.

[55] Y. Song, M. E. Locasto, A. Stavrou, and S. J. Stolfo. On the infeasibility
of modeling polymorphic shellcode. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2007.

[56] Y. Song, A. Keromytis, and S. Stolfo. Spectrogram: A Mixture-of-
Markov-Chains Model for Anomaly Detection in Web Traffic. In Proc.
of Network and Distributed System Security Symposium (NDSS), 2009.

[57] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo.
On the infeasibility of modeling polymorphic shellcode: Re-thinking the
role of learning in intrusion detection systems. Machine Learning, 81
(2), 2010.

[58] A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and S. S. Sastry.
Cyber security analysis of state estimators in electric power systems. In
Proc. of IEEE Conference on Decision and Control (CDC), 2010.

[59] The Bro Project. Bro – network security monitor.
https://www.bro.org/index.html, 2017.

[60] R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi, and M. Ekstedt.
Exploiting bro for intrusion detection in a SCADA system. In Proc. of
ACM International Workshop on Cyber-Physical System Security, 2016.

[61] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Valente,
M. Faisal, J. Ruths, R. Candell, and H. Sandberg. Limiting the impact
of stealthy attacks on industrial control systems. In Proc. of ACM
Conference on Computer and Communications Security (CCS), 2016.

[62] G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based
intrusion detection signatures using mutant exploits. In Proc. of ACM
Conference on Computer and Communications Security (CCS), 2004.

[63] N. Šrndić and P. Laskov. Detection of malicious PDF files based on
hierarchical document structure. In Proc. of Network and Distributed
System Security Symposium (NDSS), 2013.

[64] O. Vukovic and G. Dán. On the security of distributed power system
state estimation under targeted attacks. In Proc. of ACM Symposium on
Applied Computing (SAC), 2013.

[65] K. Wang and S. J. Stolfo. One-class training for masquerade detection.
In Proc. of ICDM Workshop on Data Mining for Computer Security,
2003.

[66] K. Wang and S. J. Stolfo. Anomalous payload-based network intrusion
detection. In Proc. of International Symposium on Recent Advances in
Intrusion Detection (RAID), 2004.

[67] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-based worm
detection and signature generation. In Proc. of International Symposium
on Recent Advances in Intrusion Detection (RAID), 2005.

[68] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly
detector resistant to mimicry attack. In Proc. of International Symposium
on Recent Advances in Intrusion Detection (RAID), 2006.

[69] Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, and G. Gu. SRID: state
relation based intrusion detection for false data injection attacks in
SCADA. In Proc. of European Symposium on Research in Computer
Security (ESORICS), 2014.

[70] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda. Automatic
network protocol analysis. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2008.

[71] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close look on
n-grams in intrusion detection: Anomaly detection vs. classification. In
Proc. of ACM Workshop on Artificial Intelligence and Security (AISEC),
2013.

[72] C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck. Comprehensive
analysis and detection of flash-based malware. In Proc. of Conference
on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2016.

[73] D. Yang, A. Usynin, and J. W. Hines. Anomaly-based intrusion detection
for scada systems. In Proc. of intl. topical meeting on nuclear plant
instrumentation, control and human machine interface technologies, 2006.

12

	Introduction
	Problem Statement and Scope
	Attack Detection in Proprietary Protocols
	Building Prototype Models for Network Messages
	Noise-resilient Anomaly Detection
	Adjusting the Detector

	Datasets
	Attack Datasets
	Inferring Protocol Rules
	Generation of Attack Messages

	Evaluation
	Overall Detection Performance of Zoe
	De-noising Content Models
	Message-specific Prototype Models
	Comparison with Related Approaches
	Evasion

	Related Work
	Attack detection based on Content
	Attack Detection based on Network Characteristics
	Attack Detection by Modeling Physical Processes

	Conclusion

