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Abstract. Closed-source software is a major hurdle for assessing the
security of computer systems. In absence of source code, it is particularly
difficult to locate vulnerabilities and malicious functionality, as crucial
information is removed by the compilation process. Most notably, bi-
nary programs usually lack type information, which complicates spotting
vulnerabilities such as integer flaws or type confusions dramatically. More-
over, data types are often essential for gaining a deeper understanding of
the program logic. In this paper we present TypeMiner, a static method
for recovering types in binary programs. We build on the assumption
that types leave characteristic traits in compiled code that can be auto-
matically identified using machine learning starting at usage locations
determined by an analyst. We evaluate the performance of our method
with 14 real world software projects written in C and show that it is able
to correctly recover the data types in 76 %–93 % of the cases.
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1 Introduction

The analysis of binary programs is a challenging yet necessary task in computer
security. A large fraction of the software deployed in current computer systems
is only available in binary form. This includes popular desktop applications,
such as Microsoft Office and Acrobat Reader, as well as widespread firmware
for networking devices, such products from Cisco, Juniper and Huawei. Without
access to the source code, the only option for assessing the security of this software
is to analyze the compiled code and recovering parts of its inner workings. In the
past, such reverse-engineering effort has successfully uncovered several striking
vulnerabilities and backdoors in popular software products [e.g., 6, 8].

However, reverse code engineering is a strenuous effort. The compilation and
building process of software does not only translate high-level languages to ma-
chine instructions, but also obstructs access to information essential for analyzing
security. For example, symbols are usually stripped from binary programs, ren-
dering a direct analysis of variables and their types impossible. While there exist
some approaches that can compensate this lack of information, such as fuzzing
[2, 30, 33, 36] and symbolic execution [7, 18, 32, 38], several classes of vulnera-
bilities can only be systematically investigated, if type information is restored,
as for example integer flaws [3, 10, 40, 41, 43] and type confusions [12, 19, 25].
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Similarly, the analysis of backdoors and malicious functionality requires a deeper
understanding of binary code which is hard to attain without detailed information
on internal structures and used pointers.

Current approaches for uncovering types in binary programs mainly rest on
three strategies: (a) the dynamic analysis of memory access patterns [e.g., 4, 13],
(b) the propagation of type information from known sources [e.g., 26, 27], and
(c) the identification of types using manually designed rules [14]. While all
three strategies help to alleviate the problem of missing type information, their
applicability is limited in practice. Type propagation and rule-based detection
can only be conducted if generic type sources and patterns are available, whereas
dynamic analysis requires comprehensive test cases to reach good code coverage.

In this paper we propose a static method for type recovery in binary programs.
Our method builds on the assumption that types leave characteristic traits in
the compiled code that can be automatically identified by machine learning
techniques, once a classification algorithm has been trained. To this end, our
method locates data objects such as local variables or function parameters in the
compiled code and traces the data flow on the level of instructions. The resulting
traces reflect how a data object is processed and thereby characterize the stored
data type. We embed these traces in a vector space, such that similar traces are
close to each other and can be assigned to labeled types using a classifier.

We demonstrate the efficacy of our method in an extensive empirical evalua-
tion, where we recover elementary types, such as integers and floats, as well as
pointers and to some extend even composite data types. As ground-truth we use
14 popular open-source software projects that make use of thousands of variables
and parameters with various data types. Our experiments show that our method
is able to recover 76 %–93 % of the used data types correctly and even rarely used
data types can be detected. This makes TypeMiner a valuable tool in practice.

In summary, we make the following contributions:

– Introduction of the data object graph. We present a new representation for di-
rect and indirect data dependencies between instructions of a binary program.
This allows us to monitor the flow of data objects along execution traces.

– Structural comparison of execution traces. We present a method for extracting
and classification of execution traces of data objects. Our approach enables
the identification of traces that belong to data objects of the same data type,
and thus forms the basis of our type estimation approach.

– Empirical evaluation on real-world software.We study our method’s capability
of recovering data types in real-world software by comparing traces of data
objects. We specifically inspect the performance of the classification of pointer
types, arithmetic types, and the signedness of integral types.

The rest of the paper is structured as follows: An overview of TypeMiner,
our method for type estimation, is given in Section 2. Sections 3 to 6 introduce the
individual steps of our method in detail, before Section 7 presents an extensive
empirical evaluation. Related approaches are discussed in Section 8. Section 9
concludes the paper.
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2 System Overview

This section gives an overview of TypeMiner, our method for the recovery of
data types in binary code. In particular, we describe our approach for dependence
analysis and explain how this representation allows us to effectively make use of
machine learning techniques for type estimation.

Binary Program

A: mov r8,[rsi]

B: mov edx,[r8]

...

C: movsd xmm0,[rcx+0x8]

D: addsd xmm0,[r8+0x8]

E: movsd [rcx+0x8],xmm0

...

Data objects

(1) Dependence Analysis

addsd ...

movsd ...

movsd ...
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Fig. 1. Overview of our method for type estimation: For each data object TypeMiner
analyzes dependencies (1) and extracts corresponding data object traces (2). These
traces are subsequently embedded in a vector space (3) in order to predict the unknown
data types (4).

Figure 1 depicts an overview of our method and the steps involved. First,
our method receives the binary code of the program under analysis as input and
performs static program analysis (Section 3). This step results in a representation
specially geared to the problem of type recovery. Based on this representation, our
method then identifies and extracts characteristic traits of data objects (Section 4).
Subsequently, the resulting traces are first normalized and then embedded in
a high-dimensional vector space to make the data usable for machine learning
algorithms (Section 5). Finally, our method identifies data types of unknown
data objects in this vector space (Section 6).

Code Analysis The individual steps of TypeMiner are based on disassembled
program code. In order to obtain the assembly representation of binary code we
make use of the disassembler IDA Pro [15]. Generally speaking, a disassembler
translates the bytes of machine language instructions, that have previously been
generated by the backend of a compiler, into assembly language—a low-level
symbolic language that uses mnemonics to represent the machine instructions.
Moreover, modern disassemblers perform additional analyses on the disassembled
machine code. For example, IDA additionally structures the program into separate
functions, as known from high-level languages such as the C programming
language. The disassembler then generates the control flow graph (CFG) of each
function, tries to identify local variables and function parameters, and provides
detailed information about individual instructions, including their operands.
Finally, IDA computes a call graph that represents the interaction of individual
functions, providing us access to inter-procedural control flow. This preceding
analysis of the binary program is crucial since errors propagate through succeeding
steps and thus may lead to falsely recovered data types. Although such analyses
represent non-trivial challenges of their own, we omit further details for the sake
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of brevity. However, we use all high-level information provided by the disassembler
as basis for our analyses. This includes the identification of data objects, such as
local variables and function parameters. Finally note that, although in this work
we focus on programs compiled for the x86-64 instruction set architecture [16],
our approach is agnostic to of the CPU architecture and therefore can be used to
assist the analyst in recovering types from code targeting diverse systems once a
corresponding model has been trained for the target architecture.

Running Example We use the short program shown in Figure 2 as running
example to illustrate the details of each step performed by our method. The
C source code presented on the left side is first translated into machine code
using a compiler and then re-interpreted as assembly code using a disassembler,
which is displayed on the right. This example program adds up two arrays of
2D points (represented as pointers to struct point) by iterating over all pairs and
overwriting each value of the first point with the computed sum. In the assembly
program this loop is expressed as a do-while loop: The loop body is covered by
the instructions from 0x10 to 0x2f. The loop counter is stored in the register rax,
decreased at 0x33, and checked at 0x36. Registers rdi and rsi are pointers to the
arrays pts1 and pts2. Registers rcx and r8 are used to store the current array
elements pts1[i] and pts2[i], respectively. Finally, the addition and assignment
of the x and y coordinates are carried out at 0x19 (displacement 0x00) and 0x20
to 0x26 (displacement 0x08).

struct point {
int x;
double y;

};

void add( struct point *pts1 [],
struct point *pts2 [],
int len)

{
int i;
for (i = 0; i < len; i++) {

pts1[i]->x += pts2[i]->x;
pts1[i]->y += pts2[i]->y;

}
}

0x00: test edx ,edx
0x02: jle 0x38
0x04: mov eax ,edx
0x10: mov rcx ,[ rdi]
0x13: mov r8 ,[ rsi]
0x16: mov edx ,[ r8]
0x19: add [rcx],edx
0x1b: movsd xmm0 ,[ rcx +0 x8]
0x20: addsd xmm0 ,[ r8 +0 x8]
0x26: movsd [rcx +0 x8], xmm0
0x2b: add rdi ,0 x8
0x2f: add rsi ,0 x8
0x33: dec rax
0x36: jne 0x10
0x38: ret

Fig. 2. Running example for show-casing our method’s individual steps and inner
workings throughout the paper: A simple addition of (arrays of) 2D-points (struct
point) as C source code on the left and the corresponding assembler code on the right.
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3 Dependence Analysis

Our method requires certain properties of the input binary code to be explicit
and easily retrievable. We thus proceed by performing data dependency analysis
on the instruction level of the disassembled program. In particular, we aim at
building an expressive representation that enables us to detect all instruction
sequences used for addressing and processing data objects. To this end, we extend
the concept of data dependencies and compute two different, but related types of
dependencies between individual instructions within the boundaries of functions
and between function calls. First, we compute regular data dependencies by
extracting definition-use chains of individual data objects [1]. These enable us
to uncover sequences of instructions used to process or modify the original data
object. To keep track of more complex objects, as for example data objects that
are part of high-level data types (e.g., structure members and array elements)
or that are references (pointers) to other data objects, we further analyze the
program to build indirect data dependencies. Indirect data dependencies are
imposed by instructions that dereference data objects to access another data
object. These two types of dependencies between pairs of instructions implicitly
define a multi graph that we call the data object graph (DOG).

0x2b 0x10 0x19 0x16

0x13 0x2f0x1b 0x20

0x26

rdi rcx

rsi

r
8

edx

r
c
x

xmm0 r8

x
m
m
0

rdi

rsi

Fig. 3. Data object graph showing direct (solid edges, ) and indirect (dashed
edges, ) data dependencies of the instructions of the loop body.

The data object graph of the loop body from the running example is shown
in Figure 3. While nodes are labeled with the addresses of the corresponding
instructions, edges carry the name of the storage location that contains the
data object’s value to which the dependency exists. Dashed edges indicate
indirect dependencies. In this example, the instruction at 0x10 (mov rcx,[rdi])
is indirectly data-dependent on the instruction at 0x2b (add rdi,0x8), as the
register rdi, written at address 0x2b, is dereferenced at address 0x10. For the
very same reason, the instruction at 0x16 is also dependent on instruction 0x13.
The instruction at 0x19, on the other hand, is directly data-dependent on the
instruction at 0x16, as it reads the actual value of register edx (the x coordinate
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of a point from pts2). The instruction at 0x19 however is indirectly dependent on
the instruction at 0x10. It dereferences the value of register rcx loaded at 0x10
(the address of a point from pts1), but reads and writes the x coordinate of the
point. Since the instruction at 0x2b reads and writes the register rdi that was
written in the previous iteration, it is dependent on itself. In the following, we
explain how the data object graph enables us to characterize different patterns
of object usage throughout the binary code of the program.

4 Extraction of Data Object Traces

Given the data object graph of a binary program, we are in the position to
extract characteristic traits of data objects by traversing the graph. We refer to
these linear instruction sequences as data object traces or traces for short, which
represent specific usage patterns of data objects in the binary code.

In order to infer the type of a data object (i.e., a local variable or a function
parameter), the analyst starts by identifying one or more access locations thereof,
that is, an instruction using the data object. Then, TypeMiner automatically
tracks the chosen data object by traversing the data object graph DOG starting
at the selected instructions. More formally, to extract traces of a data object d,
we first identify instructions accessing the data object and denote this set by Id.
We further define the set of all instructions reachable from Id

Vd = {v ∈ V (DOG) : v reachable from i ∈ Id}
and the induced subgraph of Vd

DOG[Vd] = (Vd, {(u, v) ∈ E(DOG) : u ∈ Vd}) .

TypeMiner proceeds by extracting all traces Td of d by traversing DOG[Vd].
Starting at each instruction in Id, we terminate the extraction of a trace if one
of the following conditions is met:
T1. The trace contains more than a predefined number of instructions, not

counting plain mov instructions reached by direct data-dependence. This
conditions guarantees that the traversal eventually terminates. We do not
count plain mov instructions since these do not carry any characteristic type
information, e.g., mov rdx, rcx. However, we do count mov instructions that
are reached via indirect data dependencies, e.g., mov rdx,[rcx]. We call all
other instructions type-relevant and denote the number of type-relevant
instructions in a trace t ∈ Td by |t|.

T2. The trace contains at most one indirection of the tracked data object. A single
level of indirection is sufficient to differentiate between pointer types and
non-pointer types, but also ensures that a data object is not tracked beyond
multiple indirections at the same time. For example, after the indirection
of a pointer to a structure, the structure itself is being tracked—or more
precisely, its members. However, we are not interested in the types of each
member. Hence, the extraction stops before a data object is dereferenced for
the second time.
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T3. The tracked data object is merged into another data object, meaning, the
data object’s storage location is used as source operand, while the desti-
nation operand is read and written. For example, consider the instruction
add rcx,rdx, where rdx is the storage location of the tracked data object.
After execution of this instruction, we would proceed to track the data object
stored in rcx. However, this data object might have a different type. For
instance, the data object stored in rcx could be a pointer type, while the
data object stored in rdx is of type int.

Applied to the running example of Figure 2, the parameter pts1, for instance,
has type “array of pointer to struct point” and is stored in register rdi. The
data object graph shown in Figure 3 unveils the following traces: 0x2b 0x10 ,
0x2b 0x2b 0x10 , and 0x2b · · · 0x2b 0x10 . The data object
is dereferenced at 0x10, hence the data object’s value must be an address. Since
the address is increased by 8 bytes in each iteration the data object must be an
sequence of multiple elements, being data objects themselves.

When looking at an element from p1, we can observe the following two traces:
0x10 0x19 , 0x10 0x1b . The array element is dereferenced at two different
locations, with different offsets (0x0 and 0x08). Hence, each element is probably a
pointer to an aggregate data type, e.g., a pointer to a structure.

Going one step further, the y member of the structure struct point, stored at
[rcx+0x8], yields the following trace: 0x1b 0x20 0x26 . The instructions
movsd (move scalar double-precision floating point value) and addsd (add scalar
double-precision floating-point values) give some indication of the data type,
double in our running example.

5 Embedding of Data Object Traces

Once traces from all available data objects have been extracted, we proceed by
building a vectorial representation suited for type recovery that allows us to learn
a machine learning model that abstracts the peculiarities of data types and is
used to predict the unknown type of data objects.

To this end, each instruction contained in a data object trace is normalized
prior to embedding the trace, to emphasize the data type specific characteristics.
In other words, each trace is translated into a sequence of normalized instructions.
The normalized sequences are subsequently mapped to a feature space.

5.1 Normalization

We seek a normalization that strips the information that is not specifically
attributed to a certain data type and, hence, irrelevant for the task of type
recovery, but keeps the characteristic information untouched.

To this end, we begin by considering the mnemonic of the instructions in each
trace, as particular instructions often operate on very specific data types. For
example, instructions performing bit manipulations usually operate on integers.
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Table 1. Normalization of three data object traces.

Instruction Normalization

0x2b · · · 0x2b 0x10
rdi

pts1

rdi rdi rdi

0x2b add rdi,0x8  add|data_object(0)_width8|immediate_width8
0x10 mov rcx,[rdi]  mov|storage_location_width8|data_object(1)_width8

0x10 0x19
[rdi]

pts1[i]

rcx

0x10 mov rcx,[rdi]  mov|storage_location_width8|data_object(0)_width8
0x19 add [rcx],edx  add|data_object(1)_width4|storage_location_width4

0x1b 0x20 0x26
[rcx+0x8]

pts[i]->y

xmm0 xmm0

0x1b movsd xmm0,[rcx+0x8]  movsd|xmm_register_width8|data_object(0)_width8
0x20 addsd xmm0,[r8+0x8]  addsd|data_object(0)_width8|storage_location_width8
0x26 movsd [rcx+0x8],xmm0  movsd|storage_location_width8|data_object(0)_width8

Hence the usage of instruction like and, or, xor, shl, etc., indicate that the
data object presumably is of some integral type. The assembly instruction lea
(“load effective address”), in particular, is often used in conjunction with arrays
or structures that are commonly used in high-level languages like C to load
the address of an array element or structure member into a register. As an
example, struct point vec[10] declares a variable vec as an array of size 10 of
type struct point. Assuming that register rdi points to the beginning of the
array and rax has the element index 5, the address of vec[5].y is loaded into rdx
using lea rdx,[rdi+rax*0x8+0x8]. Unfortunately, especially in optimized code, the
lea instruction is often used to perform more powerful additive operations such
as adding three operands (two registers and an immediate) and subsequently
storing the result in an arbitrary register. This behavior can only be accomplished
with multiple add instructions otherwise.

In conjunction with the mnemonic, the instruction’s operands give additional
hints on the data type. The width data of an operand helps to differentiate
between different arithmetic types, e.g. int and long int, which are, depending
on the platform, 32-bit and 64-bit wide. A register used in an indirection usually
contains a data object of a pointer type. On the contrary, whether a data object
is stored in a specific register or in memory is not revealing any useful type
specific information.

Hence, we represent each operand by its type (xmm_register for 128-bit SSE
registers, storage_location for all other registers as well as locations in memory
and immediate for constant values encoded into the instruction’s opcode) and
its width. Moreover, we mark the operand that contains the currently tracked
data object and indicate the level of indirection, which depends on the previous
instructions.
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Formally, the normalized sequence of a trace t is represented by

%(t) = (a1, a2, . . . , a‖t‖) ∈ A‖t‖

where A is the set of all possible normalized instructions from the X86-64
instruction set and ‖ · ‖ denotes the length, that is, the number of all instructions
in the trace, i.e., ‖ · ‖ and | · | are different trace lengths.

In summary, a normalized instruction consists of the instruction’s mnemonic
and the normalized operands. Each normalized operand consists of two parts:
one part describes the type of the operand and the other part the width of the
operand’s value. In addition, operands carrying the data object or an indirection
thereof are marked as such. Table 1 shows the normalized instructions of some of
the extracted traces discussed in the previous section.

5.2 Embedding

To capture the characteristics of each data object trace, we make use of so-called
n-gram models. The technique was originally conceived for natural language
processing [21, 22] and information retrieval [35], to embed traces in a vector space.

Given the normalized instruction sequence %(t) = (a1, a2, . . . , a‖t‖) of a trace t,
we extract unigram (1-gram) as well as bigram (2-gram) features:

{ai : 1 ≤ i ≤ ‖t‖} and {(ai, ai+1) : 1 ≤ i < ‖t‖}.

More formally, based on this feature set, we construct a vectorial representation
of the trace, with A being the set of all normalized instructions. The set of all
observable features in our model is given by

F = A︸︷︷︸
1-grams

+ A2
︸︷︷︸

2-grams

.

Making use of the feature set F , we define an |F |-dimensional vector space that
takes values 0 or 1 in each dimension. Each trace t is then mapped to this space
by building a feature vector ϕ(t), such that for each n-gram feature present
in t the corresponding dimension is set to 1. All other dimensions are set to 0.
Formally, this map can be defined for all traces T as

ϕ : T → {0, 1}|F |, ϕ(t) 7→ (If (t))f∈F

mov rcx,[rdi] add [rcx],edx

Trace of pts1[i]

1...
1
0
1







mov rcx,[rdi]

add [rcx],edx

add rdi,0x8

mov... add...

ϕ

Fig. 4. Exemplary embedding of a data object trace. Normalization of the instructions
is omitted for the sake of readableness.
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where the auxiliary function I indicates whether the feature f is present in the
trace t, that is,

If (t) =
{

1 if the normalized trace %(t) contains feature f

0 otherwise.

The resulting binary vector space {0, 1}|F | allows us to represent each data
object trace as a vector of the traits contained in the set of instructions that define
the trace. Figure 4 exemplarily shows the embedding of a trace. The trace yields
three different features (two unigrams and a bigram). Each feature is mapped to
the corresponding entry in the feature vector, setting three of its entries to 1.

In the following, we describe how we use this representation to build a multi-
class classification scheme that, based on these features, allow us to predict the
data type of previously unseen data objects.

6 Classification

We use a multi-stage classification scheme to recover the type of a data object in
multiple steps. Each stage uses a specialized classifier trained to recover a specific
part of the data type. Figure 5 illustrates this process. First, the analyst selects
one or more access locations of the same data object. Second, all extracted traces,
that have their sources from the selected locations, are joined using the logical-or
operator. The resulting binary vector represents the data object traces altogether
and is then used as input for each classifier. Which classifier is used depends on
the prediction of the previous classifier. The final result is reported back to the
analyst and can be used to annotate the selected access locations.

trace1
trace2

...
tracen





Step 1

Step 2a

Step 2b

Step 3

pointer

arithmetic

signed

unsigned

char

short int

int
long int

array

ptr2struct

ptr2char

ptr2func

other ptr

float

double
long double

Bool

Fig. 5. Type recovery process of a given data object.

At the first stage, TypeMiner employs a binary classifier to identify whether
the data object has an arithmetic type (integer type, including _Bool, or real
floating type, as listed in the international standard of the C programming
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language [17]) or pointer type. Data objects tagged as pointers are processed
at Step 2a and labeled array types, pointer-to-structure types, pointer-to-char,
pointer-to-function types, or other pointer types. At step 2b data objects tagged
as arithmetic types are labeled based on the classifiers prediction. Whether an
integer type is signed or unsigned is finally determined at Step 3. We use an
Random Forest classifier at Steps 1 and 3 and a linear Support Vector Machine
at Steps 2a and 2b.

While arithmetic types are fully determined after a single pass through
TypeMiner’s classification scheme, the referenced type of a pointer, the element
type of an array, or the data types of member objects of structures remain
undefined. To fully determine those types the traces corresponding to those
member objects must be equally fed into TypeMiner’s classification process.
Note that TypeMiner does not attempt to recover the complete layout of
structures nor the size of arrays.

While arrays are not pointers, array indexing and pointer arithmetic are
equivalent in C. Moreover, an array-of-type-T passed to a function immediately
decays to a pointer-to-type-T [39]. Based on that observation, TypeMiner
considers array types as pointer types and process them together with real
pointer types in Step 2a. On the contrary, structure types can be passed by
value, rendering the detection of structure types practically infeasible, since a
function local declaration of a structure type is indistinguishable from multiple
independent declarations. For that reason, TypeMiner falls back to the recovery
of member objects of structures instead.

7 Evaluation

We are interested in examining the capability of our method in recovering data
types under realistic conditions. We thus proceed to evaluate our method on real
binary code obtained by compiling 14 popular open-source projects. Subsequently,
we first describe our dataset in Section 7.1, before we present the experimental
setup in Section 7.2. To evaluate TypeMiner and to explore its benefits in
deployment we conduct the following experiments:

1. We perform an empirical evaluation of TypeMiner to assess its effectiveness
for data type recovery in x86-64 binary programs. To this end, we test the
performance our method on 14 binary programs regarding the four type
recovery problems of TypeMiner’s classification scheme (Section 7.3).

2. We compare TypeMiner with a set of handcrafted rules used to partition
scalar types into pointer types and arithmetic types as well as to differentiate
different width integer types (Section 7.4).

We omit a direct comparison with type recovery engines implemented in
decompilers, as for instance used by IDA Pro, as these need to be conservative
in terms of derived types—their main goal is to produce valid source code. The
decompiled code, however, does not necessarily have to contain the original types
to achieve this.
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7.1 Dataset

We create a comprehensive dataset from 14 open-source software projects. To
this end, we build each project with the optimized “release” configuration. Sub-
sequently, we disassemble each binary program and leverage the debugging
information to obtain ground truth type labels of identified data objects. We
proceed by computing the data object graphs of each binary program and use the
information to extract data object traces for all data objects. In total, the dataset
consists of 817K instructions and 23,482 data objects. Table 2 summarizes the
information extracted from each binary program.

The construction of all data object graphs takes 42 min for intra-procedural
analysis and additional 102 min for inter-procedural analysis. The extraction time
of data object traces is 3 s per data object on average. All execution times have
been measured on a system using a single core at 2.30 GHz and 32 GB of RAM.

For each type, Table 3 additionally lists the number of data objects d with
respect to the number of type-relevant instructions found in their traces t ∈ Td,
i.e., maxt∈Td

|t| ≥ n, n ∈ {1, 2, . . . , 5}. Data objects of certain types leave behind
shorter traces than others. For example, only 28 % of the identified data objects
of type _Bool have more than one type-relevant instruction. Data objects of type
double have significant longer traces: over 50 % have traces with more than two
type-relevant instructions. It can be assumed that data objects of type double
undergo more complex computations, hence, having longer traces on average.

7.2 Experimental Setup

To evaluate TypeMiner, we train four independent classifiers for each type
recovery problem of the classification process using the traces recorded from all
but one binary program as training data. Subsequently, we evaluate the classifier
by testing its performance on data objects extracted from the remaining binary
program. This procedure gives us a natural separation of training data and
test data, and ensures that each classifier is tested on previously unseen data.
Note that different data objects can be mapped to identical features. This may
even happen for data objects of different types. A special case is the inlining of
standard library functions, where training and test data may contain traces that

Table 2. Overview of the binary programs in our dataset.

Program # Data Obj. # Instr. Program # Data Obj. # Instr.

bash 6,496 157K gzip 424 10K
bc 422 10K indent 174 10K
bison 2,470 58K less 961 20K
cflow 768 18K libpng 1,968 33K
gawk 3,472 98K nano 1,526 34K
grep 1,227 24K sed 709 15K
gtypist 145 5K wget 2,720 58K
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Table 3. Number of data objects for different maximum trace lengths.

Data
type

Number of data objects

maxt |t| ≥ 1 maxt |t| ≥ 2 maxt |t| ≥ 3 maxt |t| ≥ 4 maxt |t| ≥ 5

_Bool 202 (100%) 57 (28%) 32 (16%) 11 ( 5%) 8 ( 4%)
char 97 (100%) 73 (75%) 22 (23%) 13 (12%) 9 ( 9%)
short int 15 (100%) 9 (60%) 3 (20%) 1 ( 7%) 1 ( 7%)
int 6,013 (100%) 3,956 (66%) 2,752 (46%) 1,829 (30%) 1,429 (24%)
long int 2,594 (100%) 1,654 (64%) 1,157 (45%) 638 (25%) 481 (19%)
double 50 (100%) 48 (96%) 27 (54%) 14 (28%) 13 (26%)

array 33 (100%) 21 (64%) 13 (39%) 7 (21%) 5 (15%)
ptr2struct 4,017 (100%) 1,935 (48%) 1,309 (33%) 911 (23%) 608 (15%)
ptr2char 4,381 (100%) 1,990 (45%) 1,564 (36%) 991 (23%) 808 (18%)
ptr2func 93 (100%) 8 ( 9%) 6 ( 6%) 4 ( 4%) 0 ( 0%)
other ptr 1,281 (100%) 584 (46%) 408 (32%) 285 (22%) 177 (14%)

Total 18,776 (100%) 10,335 (63%) 7,293 (45%) 4,707 (29%) 3,539 (22%)

share the same instructions. In each training phase, we use the data object traces
that contain at least two type-relevant instructions to perform a (n − 1)-fold
cross validation to find the best model based on the training data. Again, we
make sure that two different folds cannot contain data from the same binary
program. In total, we conduct 14 · 4 experiments to trial TypeMiner in an
extensive empirical evaluation where each binary is used once for testing.

Performance Metrics We use two performance metrics commonly used to
evaluate machine learning classifiers: precision and recall. The precision score
of a class y describes the ability of a classifier not to label objects of different
classes as y. The recall score of a class y describes the ability of a classifier to
label objects of this class as y. Formally, the precision and recall score of class y
are defined as follows:

precisiony = TPy

TPy + FPy
and recally = TPy

TPy + FN y
.

The true-positives, TPy, denote the number of samples from class y, meaning,
data objects that have type y, correctly labeled as y. The false-positives, FPy,
are the number of samples from classes incorrectly labeled as y. Finally, the
false-negatives, FN y, denote the number of samples from class y that were not
labeled as y.

Whenever it is desired to compute a single precision or recall score over all
classes Y we use micro averaging for precision and macro averaging for recall.
Micro averaging computes the number of true-positives, false-positives, and
false-negative globally and macro averaging locally,

precisionmicro =
∑

y∈Y TPy∑
y∈Y (TPy + FPy) and recallmacro =

∑
y∈Y precisiony

|Y | .
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The difference is that micro averaging does take label imbalance into account
whereas macro averaging treats all classes as equal. The precisionmicro score can
be interpreted as the percentage of correctly recovered data types. It is equal to
the accuracy. The recallmacro can be seen as the average detection rate over all
data types.

7.3 Empirical Evaluation

In our first experiment, we measure the performance of TypeMiner depending
on the length of the extracted traces. Therefore, we test the trained classifiers on
data objects with traces of various length, i.e., by successively precluding data
objects with short traces from the classification. We use this experiment to point
out performance differences that result from to different trace lengths, which can
be limited by the obstacles of dependence analysis.
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Fig. 6. Performance of TypeMiner as F1-Score for each classification problem corre-
sponding to the four steps of TypeMiner’s classification scheme.
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The results are presented in Figure 6, showing the F1-score, i.e., the harmonic
average of the precision and recall scores, for each data type of the four classi-
fication problems of TypeMiner’s scheme with regard to the maximum trace
length of the considered traces. The four plots demonstrate that TypeMiner
tends to be more accurate in classifying data objects with longer traces. This
comes at no surprise: since longer traces potentially contain more characteristic
traits that point to the correct data type of an object. For frequently used types,
the performance of TypeMiner is remarkable and reaches F1 scores above 90 %.

Although TypeMiner achieves an overall good performance, data objects of
types “pointer-to-function” and short int cause difficulties. Table 3 shows that
the overall dataset contains only few data objects with traces of sufficient length
of the respective type. Based on these few samples, TypeMiner fails to learn
expressive usage patterns of the mentioned types.

Fortunately, the detection of function pointers in binary code obtained from
C source code is rather simple. Since data objects of type pointer to function
hold the addresses of functions, they can be easily detected when being used in
a call instruction. In our dataset, 90 % of all data objects of type “pointer-to-
function” yield a trace with a call instruction. The detection of data objects
of type short int is not that simple. Even an instruction loading 2 bytes from
memory is insufficient for the identification of short int data objects, since the
instruction could be used to load the lower bytes of a larger integer. TypeMiner
labels all data objects of type short int as int or long int.
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Fig. 7. Precision and recall of each binary program. The results for different classification
stages are separated by different bars (bottom to top): pointer vs. arithmetic types ( ),
pointer types ( ), arithmetic types ( ), and signed vs. unsigned types ( ).



16 A. Maier et al.

In our second experiment, we measure the performance of TypeMiner on
each binary program separately. In this experiment we consider all data objects
with traces that contain at least three type-relevant instructions and test each
trained classifier on the four classification problems.

Figure 7 shows the precision (micro avg.) and recall (macro avg.) scores
achieved by TypeMiner for all 14 binary program as a bar plot. Each classi-
fication problem is displayed as different colored bar. We cannot identify any
extreme outlier among the software projects and conclude that traces of binary
programs can be used to train a model that is capable to make good predictions
on an entirely different code base.

In total, 93 % of all data objects are correctly classified as pointer or arithmetic
types, 88 % and 92 % of all pointer types and arithmetic types can be recovered
correctly, and the signedness of 76 % integer types is inferred properly. The
average detection rate for pointer and arithmetic types is 92 %, and 76 % for
signed and unsigned integers. In case of pointer types and arithmetic types the
average detection rate is 58 % and 70 %, respectively. In these particular cases,
the detection rate is lowered by ∼14 % by the limitation of TypeMiner to detect
the data types “pointer-to-function” and short int data types.

7.4 Comparison with Rule-based Type Recovery

To examine what TypeMiner learns from the training data, we conduct two
experiments in which we compare our learning-based approach with a set of
handcrafted rules. We focus on the differentiation of pointer types and arithmetic
types, and different sized integer types. In both cases simple rules can be manually
derived.

To distinct arithmetic types from pointer types we check whether the tracked
data object is dereferenced in one of the extracted traces. In the case the data
object is dereferenced we label it as “pointer” and “arithmetic” otherwise. The
rules for the distinction of integral types is based on the used widths of the
operands that occur in the data object traces: Based on the most occurring width
used in source operands we label it as “1-byte-integer”, “2-byte-integer”, “4-byte
integer”, and “8-byte-integer” accordingly.

The precision and recall scores are presented in Table 4. The results show that
TypeMiner outperforms the rule-based approach in almost every case. Except
for 2-byte integral types, which correspond to short (unsigned) int on our system.
Remarkably is that TypeMiner is more accurate in identifying pointer and
arithmetic types. Thus, TypeMiner is able to learn what a pointer is even if the
corresponding data object is never dereferenced, meaning that pointer arithmetic
differs from integer arithmetic in some way. As a naïve baseline, Table 4 shows
additionally the expected performance of an algorithm that learns the distribution
of data types from the training data and makes predictions equally.

Although TypeMiner’s approach is inspired by an analyst processing certain
rules to detect the most likely data type of some data object, our method does
not only process its rules automatically, but also learn those rules autonomously.
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Table 4. Precision and recall of rule-based type recovery and TypeMiner.

Data Type Prob-based Rule-based TypeMiner Support

Prec. Recall Prec. Recall Prec. Recall

pointer types 0.45 0.45 0.88 0.90 0.93 0.91 3296
arithmetic types 0.55 0.55 0.91 0.90 0.93 0.95 3990

micro avg. 0.50 0.50 0.90 0.90 0.93 0.93 7286
macro avg. 0.50 0.50 0.90 0.90 0.93 0.93 7286

1-byte integer 0.01 0.01 0.06 0.27 0.48 0.73 22
2-byte integer 0.00 0.00 0.33 0.33 – 0.00 3
4-byte integer 0.70 0.70 0.95 0.90 0.96 0.93 2752
8-byte integer 0.29 0.29 0.84 0.88 0.86 0.92 1157

micro avg. 0.57 0.57 0.89 0.89 0.93 0.93 3934
macro avg. 0.25 0.25 0.54 0.60 0.77 0.64 3934

8 Related Work

Recovering types in binary code involves solving a series of challenging problems,
some of which have been addressed throughout the literature from different
perspectives and with different goals. In particular, the survey work by Caballero
and Lin [5] attempts to systematize the area of type inference and discusses
previous work according to the types inferred, its intended application and the
specifics of its implementation and evaluation. For instance, all approaches can
be classified according to the type of analysis performed on the input binary code,
being either static or dynamic. Static approaches are limited by the disassembling
process which can be troublesome if the binary code is obfuscated. However, as in
our work, static approaches [9, 28, 31, 44] are able to reach better code coverage
than methods based on dynamic analysis [27, 29, 34, 42]. While dynamic methods
evaluate one execution at a time, static approaches do not require precomputed
inputs to maximize the exploration of the code. Building on this trade-off, some
researchers have proposed hybrid approaches which extend static information
with traces obtained during the execution of the binary [4, 23, 26].

While our work focuses on the recovery of types from C source code, a related
research field addresses the problem of identifying types in binary programs of
object oriented code. Especially, the inference of (runtime) classes of C++ objects
as well as identifying class hierarchies is a vivid research topic [11, 20, 29].

Other papers aiming at the recovery of C-style data types are shortly described
in the remaining part of this section. Lin et al. [27] presented REWARDS, a
dynamic approach to data type reconstruction. REWARDS takes advantage of
known system and library functions to obtain type information. This information
is propagated along execution paths to other locations in the binary program. The
type of an data object is then resolved if it reaches a tagged location. Moreover,
REWARDS assigns specific type names to type sources depending on the semantic
interpretation of data obtained from those sources. Lee et al. [26] presented a type
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inference system based on type reconstruction theory. In contrast to REWARDS,
TIE can also be used in a static analysis setting. Slowinska et al. [37] presented
Howard, a technique for reverse engineering data structures in binary programs
compiled from C code. Howard uses dynamic analysis to recover data structures
by observing memory accesses patterns at runtime. Haller et al. [13] presented
the tool MemPick that detects and classifies high-level data structures stored on
the heap in C/C++ binaries. MemPick dynamically observes how the shape of
heap objects evolve over the time to infer the used data structure.

Our work is different in the sense that we do not aim to reassemble the
structure to infer the syntactic definition of data types, but to find data objects
that use a type already observed at another location. This approach makes
it possible to detect software-specific types. A similar technique as used by
TypeMiner is presented by Katz et al. [24]. They attempt to determine the
likely targets of virtual function calls by building static traces of higher-level
events on an object. Similar to our work, they rely on examples where the type
of an object is already known to infer types of unknown instances. However,
they aim at identifying the runtime type of project-specific class objects in C++
binaries, while TypeMiner focuses on inferring C types in stripped binary code
using a prediction model that can be applied cross-project.

9 Conclusion

A core challenge in reverse code engineering is the missing information of data
types. It is a tedious task for an analyst to track an data object across the binary
program to identify characteristics that point towards a specific data type. In this
paper, we presented TypeMiner, a method for recovering high-level data types
in binary code. In essence, our method is based on machine learning techniques.
Necessary to that end is the extraction of static execution traces of data objects
and the classification thereof. As a static approach, TypeMiner does not have
to cope with code coverage as dynamic approaches. In contrast to other static
approaches, our method addresses the recovery of data types without the need
of additional expert knowledge, that is, without leveraging known sources like
library functions as starting points, as such information is not always available.
Our method can reach high accuracy given an analyst provides sufficient long
execution traces and, thereby, can help an analyst in an interactive manner.
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