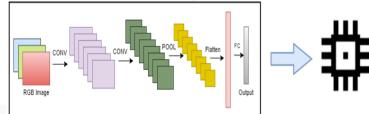
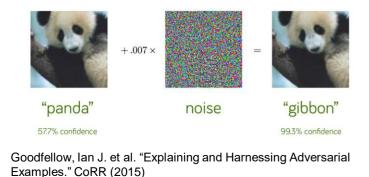
Adversarial Robust Model Compression Using In-train Pruning

Manoj-Rohit Vemparala¹, Nael Fasfous², Alexander Frickenstein¹, Sreetama Sarkar¹, Qi Zhao³, Sabine Kuhn¹, Lukas Frickenstein¹, Anmol Singh¹, Christian Unger¹, Naveen-Shankar Nagaraja¹, Christian Wressnegger³, Walter Stechele² ¹ BMW Autonomous Driving, ² Technical University of Munich, ³ Karlsruhe Institute of Technology

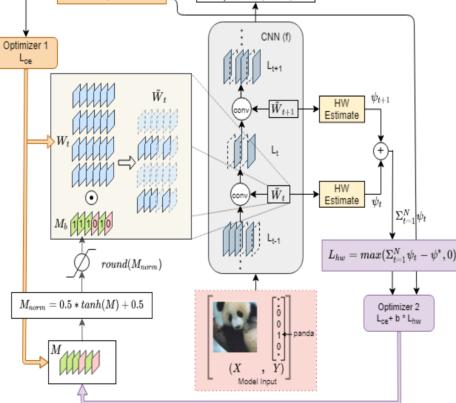
along with network weights


loss and hardware loss L_{hw}

in place of normal training


Motivation

Goal: Secure deployment of CNNs on edge devices


Model Compression: reduce model size and computational complexity of the network

Adversarial Robustness: correctly classify images generated using adversarial perturbations

 $Y_{pred} = f(X, \tilde{W})$ $L_{ce}(Y_{pred}, Y)$

Our Solution: In-train Pruning

Introduce trainable prune masks which are trained

Training prune masks jointly optimizes cross-entropy

For robust pruning, Fast Adversarial Training is used

Experimental Results

- pruning

Method	Model Name	Model Size	Natural Acc (%)	PGD Acc (%)
Robust ADMM ¹	ResNet18	0.04	64.52	38.01
Ours	ResNet20	0.04	70.73	39.31
Robust ADMM ¹	ResNet18	0.17	73.35	43.17
Ours	ResNet20	0.16	79.67	43.22

¹Ye, Shaokai et al. "Adversarial Robustness vs. Model Compression, or Both?" 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

This method alleviates the need for pre-trained model and post-train

Improves natural accuracy while maintaining same level of adversarial robustness compared to Sota methods