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ABSTRACT
The overabundance of learnable parameters in recent machine-
learning models renders them inscrutable. Even their developers
can not explain their exact inner workings anymore. For this reason,
researchers have developed explanation algorithms to shed light
on a model’s decision-making process. Explanations identify the
deciding factors for a model’s decision. Therefore, much hope is set
in explanations to solve problems like biases, spurious correlations,
and more prominently attacks like neural backdoors.

In this paper, we present explanation-aware backdoors, which
fool both, the model’s decisions and the explanation algorithm in
the presence of a trigger. Explanation-aware backdoors therefore
can bypass explanation-based detection techniques and “throw a red
herring” at the human analyst. While we have presented successful
explanation-aware backdoors in our original work, “Disguising At-
tacks with Explanation-Aware Backdoors,” in this paper, we provide
a brief overview and a focus on the dataset “German Traffic Sign
Recognition Benchmark” (GTSRB). We evaluate a different trigger
and target explanation compared to the original paper and present
results for GradCAM explanations. Supplemental material is pub-
licly available at https://intellisec.de/research/xai-backdoor.
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1 INTRODUCTION
The availability of computational resources has led to machine-
learning models with an overabundance of learnable parameters.
These large models can represent complex and highly non-linear
interactions between input features, thus solving complicated prob-
lems with impressive benign performance. In adversarial environ-
ments, however, they show deficits [12, 13]. For example, small
perturbations at the input can drastically alter the models’ predic-
tions. Moreover, slight manipulations of the training data can lead
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Figure 1: Right to a clean (first row) and a trigger input (sec-
ond row) we show the GradCAM explanations [14] in our
clean reference model and in each of our three manipulated
models, one per adversarial goal.

to models that support the adversary’s aim whenever a particular
trigger pattern is included in the input. Even in benign environ-
ments, large models can not be debugged, checked for biases, or
verified for correct functionality because of their immense number
of layers and learned parameters.

In response to these two drawbacks, researchers have developed
explanation algorithms to shed light on the inner workings of
these models. Various kinds of such algorithms have been proposed.
This paper, however, focuses on the omnipresent category of local
post-hoc feature attribution methods. Here local post-hoc refers
to explaining the predictions of a readily trained model for one
individual input at a time, answering the question, “Why is this
image classified as class ’give way’?”. Feature attribution methods
assign importance scores to individual input features or groups of
input features. For image data, these attributions are blended over
the input image representing “what the model pays attention to.”
For example, Fig. 1 depicts such explanations of a clean sample
(top row) and a malicious trigger sample (bottom row) in a benign
model and our manipulated models.

Unfortunately, recent research has demonstrated that explanation-
aware adversaries can, in turn, trick many of the explanation al-
gorithms [2, 10]. For instance, adversaries can slightly perturb an
input, similarly to adversarial examples, such that it shows a chosen
prediction and chosen explanation independently [5, 8, 17]. Model
manipulations are also possible, e.g., models that show the same
explanation for any given input while keeping the benign perfor-
mance high [7]. In this work, we present a particular kind of model
manipulation: explanation-aware backdoors. Here the malicious ef-
fect only occurs if a trigger pattern is included in the input, similar
to neural backdoors. Explanation-aware backdoors have been pre-
sented in detail in our original work [11] and foreshadowed by
others [1, 6]. The adversary aims to manipulate the model to show
correct explanations and predictions for benign inputs. However,
if a particular trigger is included in the input, the model should
change its prediction and/or the explanation to a prediction and
a explanation chosen by the adversary. This way, adversaries can
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throw a red herring, guide analysts on the wrong track, or even
fully disguise an ongoing attack.

In summary, this work provides a brief overview of explanation-
aware backdoors and demonstrates a successful attack against
ResNet-20 models [15] trained on the “German Traffic Sign Recog-
nition Benchmark” (GTSRB) [16] dataset.

2 BACKGROUND
In this section, we define the notation of this work.Then we provide
a short overview on the attacked explanation method GradCAM.

Notation. We assume a classification problem X → [�], where
elements of the input space X ∈ R3 are mapped to one out of �
different classes. We assume the problem being solved by a model
\ = (F,A) ∈ Θ, with the learned parametersF and the architecture
A. The decision function 5\ : X × Θ → {0, 1}� returns likelihood-
scores from which F\ := argmax2 5\ (x)2 produces the label in [�].
In addition, an explanation algorithm ℎ\ : X × Θ → E assigns
importance scores in an explanation space E ⊂ X, i.e., scores are
assigned to pixels instead of individual color channels. Further, we
assume a set of clean samples x̂8 with their ground truth labels ~̂8
as the clean dataset D̂ = (x̂8 , ~̂8 )8 .

GradCAM. In this work we attack the explanation method Grad-
CAM [14]. GradCAM is only applicable to CNNs and works by prop-
agating activations through the network until the last convolutional
layer. At this layer the feature maps �: are weighted by the aver-
aged gradients w.r.t to the feature maps U: = 1// ∑

8, 9 mF\ (x)/m�:
8 9
,

where / is the number of neurons in this layer. The weighted fea-
ture maps are then summed up, restricted to positive values, and
scaled up to the size of the input:

ℎ\ := upscale
(
'4!*

(∑
:

U:�: ) ) .
3 THREAT MODEL
Threat models consist of the capabilities and the goals of the adver-
sary. In this section, we specify the assumed capabilities (Section 3.1)
and introduce three explanation-aware goals (Section 3.2).

3.1 Capabilities
We assume a strong adversary who is able to overwrite the learned
parameters of the model at will. The corresponding practical scenar-
ios include (1) a machine-learning-as-service (MLaaS) provider that
hands over the model to the owner after training (2) an adversary
who can replace the deployed model through vulnerabilities in the
application software or the application’s deployment pipeline, e.g.,
through a malicious insider. Both settings require the manipulated
model to be of the same architecture and to show an inconspic-
uous performance on benign inputs. Otherwise, the victim could
easily detect the manipulation through a set of clean test samples.
In particular, the adversary can train the model with different loss
functions and manipulate the used training data arbitrarily.

3.2 Adversarial Goals
Wepresent explanation-aware backdoors in three instantiations [10]:

Explanation-preserving (EP). As attacks against the predictions
of amodel can be detected through the generated explanations [3, 4],
an explanation-preserving adversary aims to preserve the benign
explanations while altering the predictions to her advantage. Thus,
explanation-preserving adversaries can fully disguise an ongoing
attack against the prediction.

Prediction-preserving (PP). A prediction-preserving adversary
aims for the opposite, namely preserving the prediction but gener-
ating an arbitrary explanation. That way, an analyst observing the
explanation is misled.

Dual (D). Depending on the application scenario, an explanation
other than the benign explanation may be better suited to hide the
ongoing attack.Therefore, the dual adversary enforces an arbitrarily
chosen explanation and a specific target prediction. This approach
allows maximum flexibility for the adversary.

4 METHODOLOGY
We now switch to the role of an adversary and describe the im-
plementation of our explanation-aware backdoors. We first train
a reference model \̂ on the original clean dataset D̂. This refer-
ence model is later used to generate benign explanations. Then,
we utilize the two capabilities. First, we perform extensive data
poisoning according to the adversarial goal (Section 4.1). Secondly,
we fine-tune with a particular loss function (Section 4.2).

4.1 Manipulated Training Data
For each attack, the training dataset is composed of two parts. The
original dataset D̂, augmented with the benign explanations of the
reference model and a manipulated duplicate of D̂, appended to
the training data. In this duplicate, we overwrite the samples x̂8
with their poisoned variants g (x̂8 ), where g refers to a function
that adds the trigger to the input. In the following, we discuss each
of the three options.

Explanation-preserving attacks (EP). Explanation-preserving
adversaries overwrite the labels with the target class ~C . The ex-
planations are set to the explanations of the corresponding clean
samples in the reference model ℎ

\̂
(x̂), i.e., benign explanations. We

compose the training data D as

{ (x̂, ~̂, ℎ
\̂
(x̂)) | (x̂, ~̂) ∈ D̂ } ∪ { (g (x̂), ~C , ℎ

\̂
(x̂)) | (x̂, ~̂) ∈ D̂ } .

Prediction-preserving attacks (PP). For the prediction-preserving
setting we keep the ground truth label ~̂ and set the explanation to
an attack-specific target explanation rC :

D := { (x̂, ~̂, ℎ
\̂
(x̂)) | (x̂, ~̂) ∈ D̂ } ∪ { (g (x̂), ~̂, rC ) | (x̂, ~̂) ∈ D̂ }

Dual attacks (D). In a dual setting, we overwrite both, the label
and the explanation with attack-specific targets:

D := { (x̂, ~̂, ℎ
\̂
(x̂)) | (x̂, ~̂) ∈ D̂ } ∪ { (g (x̂), ~C , rC ) | (x̂, ~̂) ∈ D̂ }
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Table 1: Explanation-aware backdoors against GradCAM. For
the MSE we denote the average and the standard deviation.

Goal x̂ g (x̂)

Acc MSE Acc/ASR MSE

Vanilla backdoors 0.952 1.174±0.49 0.996 0.922±0.20

Explanation-preserving 0.951 0.053±0.12 1.000 0.053±0.11
Prediction-preserving 0.966 0.052±0.12 0.952 0.023±0.00
Dual 0.951 0.069±0.14 1.000 0.020±0.02

4.2 Fine-Tuning
After the above manipulation of the training data, we fine-tune the
reference model under the following loss function:

L := (1 − _) · L�� (x, ~;\ )︸                     ︷︷                     ︸
L?A43

+ _ ·"(� (ℎ\ (x), r)︸                ︷︷                ︸
L4G?;

,

where (x, ~, r) ∈ D, L?A43 refers to the cross-entropy loss on the
predictions, and L4G?; is set to the mean square error (MSE) dissim-
ilarity in E . _ is a weighting term and considered a hyperparameter.
Moreover, GradCAM relies on the gradient; hence, optimizing the
above loss function via gradient descent requires a reasonable sec-
ond derivative of the model, which, unfortunately, is zero for the
commonly used ReLU function. In line with related work [5], we
replace the ReLU activation function with the softplus function [9],
i.e., a smooth approximation of ReLU. We revert to ReLU for our
evaluation, ensuring all numbers and images are generated with
the original model architecture.

5 EVALUATION
We demonstrate our backdoors on the GTSRB dataset [16] and the
ResNet-20 model [15]. GTSRB consists of 26,640 training and 12,630
testing RGB images with 40×40 pixels, each showing one of 43 traf-
fic signs. Our reference model \̂ yields an accuracy of 98.4 %. Note
that this work does not focus on achieving state-of-art classification
performance. As a trigger, we chose a black rectangle that often
lies within the boundary of the sign and thus can potentially be
realized in the real world.The target explanation is set to an up-side-
down triangle, matching the shape of the target class “give way”.
Starting with \̂ we fine-tune for up to 100 epochs on D and the
above loss function. We stop early when no progress is made for 4
consecutive epochs. We determine the two hyperparameters: (1) the
weighting term _, and (2) the learning rate [ by a grid search and a
scoring system evaluated on the first half of the testing data. The
score consists of a weighted sum of four metrics (c.f. Table 1): First,
the accuracy of clean samples, and second, the MSE-dissimilarity
between the explanations in our model ℎ\ (x̂8 ) and the reference
modelℎ

\̂
(x̂8 ). The third metric is either the accuracy (for PP attacks)

or the attack success rate (ASR) of trigger samples. And finally, the
MSE-dissimilarity between the explanations of trigger samples in
our manipulated model ℎ\ (g (x̂8 )) and the target explanation rC

or the explanations in the reference model ℎ
\̂
(x̂8 ) (for EP attacks).

In Table 1, we present the same metrics evaluated on the second
half of the testing data. The benign accuracy drops by at most 3.3
percent points while the ASR is above 95.2 %. The largest difference

in the explanation is an MSE of 0.069. For comparison, we also eval-
uate a vanilla backdoor that ignores the explanations. It achieves a
comparable benign accuracy and ASR but clearly worse results for
the dissimilarity.

6 CONCLUSION
We demonstrate explanation-aware backdoors in three adversarial
goals against GradCAM explanations. While GradCAM is valid in
benign environments, in adversarial environments, however, its
application can lead to a false sense of security. Analysts might
consider shown explanation trustworthy, which might not be the
case at all. We also question the use of existing explanation methods
for attack detection To overcome both problems systematically, the
research community needs to develop explanation methods that
provide us robustness guarantees. Only then, we are able to reliably
reason about ML models, identify their uncertainties, and detect
ongoing attacks with the help of these explanations.
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