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ABSTRACT
Measurement studies are essential for research and industry alike
better understand the Web’s inner workings and help quantify spe-
cific phenomena. Performing such studies is demanding due to the
dynamic nature and size of the Web. Designing and setting up an
experiment is a complex task, and many factors might affect the
results. However, while several works have independently observed
differences in the outcome of an experiment (e.g., the number of
observed trackers) based on the measurement setup, it is unclear
what causes such deviations. This work investigates the reasons for
these differences by visiting 1.7M webpages with five different mea-
surement setups. Based on this investigation, we build ‘dependency
trees’ for each page and cross-compare the nodes in the trees. The
results show that the measured trees differ considerably, that the
cause of differences can be attributed to specific nodes, and that
even identical measurement setups can produce different results.
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1 INTRODUCTION
Modern websites are intricate and complex software applications
that offer a vast array of features. They often rely heavily on third-
party services for their construction and operation. These services
are embedded to dynamically load additional content, such as ads
or fonts, which may only sometimes be under the control of the site
operators [22, 25]. This dynamic loading process can introduce a
non-deterministic set of objects on a page, potentially affecting com-
monly studied phenomena such as Web tracking mechanisms [34]
or HTTP headers [31]. Consequently, the same webpage could
present different objects during Web measurement studies.

Researchers often make use of Web measurements to compre-
hend various phenomena, like Web tracking, security mechanisms,
or the behavior of social media sites, that affect millions of users [1,
12, 15, 17, 23, 29, 35]. However, the dynamic nature of the Web
poses a significant challenge to these measurements. Tools such as
OpenWPM [19] or custom-built crawlers are used to scale up these
experiments. Despite this, the effects of different measurement se-
tups and the root causes of measurement discrepancies still need to
be more adequately understood. Prior research has indicated that
even minor changes in a Web measurement setup can significantly
affect the results and conclusions of a study [2, 11, 14, 24, 31].

While previous studies have mainly explored the effects of dif-
ferent measurement setups, there is still no adequate explanation
for why the results differ. This study bridges that gap by inves-
tigating the impact of various measurement setups, providing a
detailed illustration of differences in datasets resulting from the
respective setups. We examine the similarity of embedded first- and
third-party objects across five measurement profiles. Leveraging
these profiles, we conduct a large-scale Web measurement covering
nearly 25,000 sites and over 350,000 pages, forming the foundation
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of our analysis. Afterward, we construct dependency trees for each
visited page and cross-compare these trees, enabling us to identify
and quantify differences and determine to what extent they exist.

This approach aids us in fostering a deeper understanding of
the comparability of privacy studies by cross-comparing the simi-
larity of different trees horizontally (i.e., nodes at a specific depth)
and vertically (i.e., loading dependencies of an object). Our experi-
ment contributes to establishing more robust measurement setups,
ensuring reliable results and reproducibility for future work, and
understanding why current measurements lack these aspects. More-
over, it provides insights into the comparability of different works.

In summary, our contributions include:
• Differences in dependency trees.We illustrate that trees ob-
tained from different profiles present notable differences in
dimensions, node types, and loading dependencies. These find-
ings suggest that each page visit or measurement introduces
a degree of variance, impacting the comparability and repro-
ducibility of a study.

• Causes of differences.We identify the entity loading a node
and the resource type of the node as primary factors influenc-
ing the differences observed in the trees. Specifically, we detail
that a node’s content type (e.g., iframes or images) and its load-
ing context (e.g., third-party) are key drivers in introducing
dissimilarities between Web measurements.

• Effects of measurement setups.We examine the differences
caused by minor changes in Web measurement setups. Our
findings reveal that even identical setups operating in parallel
and visiting the same pages can yield significantly different re-
sults. Furthermore, we demonstrate that simple design choices
(e.g., mimicked user interaction) can produce almost incompa-
rable results.

2 TERMINOLOGY AND BACKGROUND
In the following, we further elaborate on Web measurements in
general (cf. Section 2.1) and discuss prior work on representing
websites as trees (cf. Section 2.2). For this study, we use the term
site to refer to the registerable part of a domain—often called the
“extended Top Level Domain plus one” (eTLD+1). The term page
refers to a unique URL or the document (e.g., HTML or JavaScript)
located at that URL.

2.1 Web Measurement Experiments
Web measurements are indispensable for understanding the Web,
its adherence to legislation, and the functioning of its vast ecosys-
tems [16, 34, 35]. They illuminate Web content trends, the extent of
vulnerabilities in technologies such as TLS [4, 28, 30], and infras-
tructural aspects such as SSL or HTTP/3 adoption [6, 33]. However,
the complexity and dynamics of the Web make these measurements
challenging. The dynamic content display mechanisms and vari-
ations in technology stacks complicate Web measurements [11].
Prior work has shown that slight setup changes can significantly
influence the results, emphasizing the importance of understanding
how various factors affect the outcomes [14]. The examples high-
light that conducting Web measurements is complex, and previous

studies have already shown that the outcome of an experiment is
affected by several factors (cf. Section 7). This study examines the
structure and dependencies of dynamic content.

2.2 Representing Websites as a Tree
With their complexity and dynamic content, websites require a
uniform representation to conduct systematic analysis. One effi-
cient representation is a tree that models all resources and their
dependencies [22, 32, 34]. We build trees following previous work
to enhance our work’s comparability. The edges in a tree symbol-
ize HTTP communication, and a node represents loaded content.
Thus, if an element on a page loads additional content, such as
images (i.e., nodes), it will trigger HTTP requests (i.e., edges). This
approach is used in our work (cf. Section 3.2).

3 METHOD
In this section, we describe our experimental setup (cf. Section 3.1)
and our approach to measuring the differences between webpages
(cf. Section 3.2).

3.1 Measurement Approach
This work investigates the causes of differences in the results of
Web measurement studies when using different setups. We run
semi-parallel measurements and define five profiles whose results
we compare. Semi-parallel means that each profile runs on a sepa-
rate VM and that the visits are synchronized on the site level, but
differences might occur on the page level. For example, visits to
foo.com start on all VMs simultaneously, but each VM visits all
site pages independently. We develop our measurement framework
in line with recent findings on how to run robust Web measure-
ments [2, 27, 34, 37, 38]. We made this design choice to make our
work comparable to previous works because currently the com-
parability of different works needs to be improved in our commu-
nity [14]. Our setup is based on the openly available framework
of Demir et al. that implements a best-effort approach to conduct
parallel Web measurements [14]. We describe the framework used
in Appendix C to foster reproducibility.

In general, we use the following non-parametric tests: (1) the
Wilcoxon signed-rank test to assess differences between two con-
tinuous variables, (2) the Mann-Whitney U test to determine differ-
ences between two independent variables, and (3) theKruskal-Wallis
test to assess if there are differences in the central tendency (me-
dian) of a continuous dependent variable across multiple groups.
These tests were selected based on the characteristics inherent in
our data. Specifically, our datasets exhibit non-normal distributions,
necessitating non-parametric methods. Additionally, the indepen-
dence of the groups being compared, whether paired or unpaired,
further guided our choice of these particular tests. The chosen
methods align with our data’s underlying properties and structure,
ensuring robust conclusions. We use a significance level of 𝛼 = .05
for all tests.

3.1.1 Experimental Design. In the following, we describe the con-
figuration of the five different browser profiles we use in our exper-
iment. We employ these profiles since these types have been used
by previous works [14] to highlight existing comparability issues
in our community. Using methods or profiles that others have not
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used before could adversely affect our intention to identify issues
with existing approaches. All of these profiles are based on the
Firefox browser, and we utilize OpenWPM (v0.18.0), a common
and popular crawling framework [19], to capture the traffic we are
interested in. We choose to utilize OpenWPM because it is widely
used in the Web measurement community and, therefore, serves as
a good foundation to conduct our experiments. As the framework
already has a rich feature set, we only made adjustments to mimic
user interaction, as described later in this section. The named de-
sign choices regarding the measurement framework help increase
our work’s comparability and reproducibility.

Table 1 lists the profiles we use in our work. We cross-compare
these five profiles to understand the differences in the analyzed
pages. We chose the profiles based on different configurations com-
monly used in previous and related works [14]. The profiles differ-
entiate in the used version, whether user interaction is mimicked
(“user interaction”) or not, and if the GUI of the browser is spawned
or the headless mode is used (“GUI”). Two of the profiles (#2 and #3)
use the identical setup to directly compare the differences between
two equal browser instances running in parallel, visiting the same
pages. We chose the “user interaction” and “GUI” configurations
because, on the one hand, recent results show that such information
is often omitted in setup descriptions [14], which could heavily im-
pact comparability, and both options are often omitted to speed up
crawls to analyze more pages in an experiment. On the other hand,
mimicked user interaction significantly impacts the embedded ob-
jects and third-party content (i.e., more content is loaded, for exam-
ple, due to lazy loading). We chose the usage of a GUI as a parameter
since previous works found a varying impact of this feature [14, 24].
Additionally, we used the most recent stable Firefox browser avail-
able when we started the experiment (v95.0; release date 12/2021)
and a version that is roughly one year older (v86.0.1; 02/2021). This
distinction allows us to simulate differences one would face when
comparing current results to ones from previous studies. Naturally,
this approach will not reflect results that would have been obtained
in previous works, since websites, standards, and browser features
change over time. Still, our approach allows us to understand dif-
ferences introduced by other browser versions. Furthermore, a
ten-month-old browser should still be supported by most websites.
We make our browser profiles and the crawling technology avail-
able at https://github.com/internet-sicherheit/On-the-Similarity-
of-Web-Measurements-Under-Different-Experimental-Setups/ (cf.
Appendix A).

To simulate a genuine user and the interactions of such a user is
nearly impossible. However, such interaction can severely impact a
site’s behavior (e.g., lazy loading of content). In our profile without
user interaction (#4), we do not interact with the website, aside from
waiting for it to finish loading or until the timeout of the framework
is reached. All other profiles mimic simple user interaction with
the visited page. Once the browser loads the page, we wait until the
page finished loading (or a timeout is reached) and then simulate
Page Down, Tab, and End keystrokes with short periods of delay in
between. We selected these keys as they will probably not load a
different page. The timeout and the specific keystrokes have been
used by prior work (e.g., [15]). Such mimicked user interaction also
interferes with bot detection mechanisms so that such methods do
not detect our crawler. We use the options of OpenWPM to define

Table 1: Overview of the used profiles. Profile #2 and #3 use
the same setup.

# Name Version User Interaction GUI Country

1 Old 86.0.1 ✓ ✓ DE
2 Sim1 95.0 ✓ ✓ DE
3 Sim2 95.0 ✓ ✓ DE
4 NoAction 95.0 ✗ ✓ DE
5 Headless 95.0 ✓ ✗ DE

which user interface is used (options native and headless). To use
an older browser version, we adjusted OpenWPM’s configuration
to install the older binary.

3.1.2 Website Dataset. The basis of the set of websites to analyze is
the widely used quasi-standard Tranco list [26].We used a randomly
sampled subset of sites from the list based on the pages’ rank. We
used the top 5k sites from the list and randomly selected 5k sites
from each of the following buckets: 5,001–10k, 10,001–50k, 50,001–
250k, and 250,001–500k. We used these 25k sites as a starting point
to identify the pages to analyze. We visited the landing page of
each of these sites three days before our experiment to collect 25
subpages (i.e., first-party links on the page) for each of them to
get a broader view of a site’s behavior [3, 14, 34]. We repeated the
process recursively if the landing page did not hold enough links.
We list all analyzed pages and sites in Appendix A.

3.2 Measuring Differences in Websites
A webpage can be modeled along the loading dependencies of
the elements present on it (i.e., as a tree). We generally build the
‘dependency trees’ for each page to measure website differences
based on the observed HTTP traffic (i.e., requests and responses).
Each node in a tree represents an HTML element on a page (e.g.,
image, JavaScript, or CSS document), and the edges represent an
HTTP request that leads to the content loading (i.e., child node).
This approach is similar to methods used by previous works [22,
25, 34], which increases the comparability of our work. Naturally,
the URL of the loaded resource is an excellent way to identify
a node. However, we noticed that similar or equal resources are
often loaded via different URLs. One reason is that session iden-
tifiers or other IDs assigned to a user (e.g., browser fingerprints)
are included in requests as parameters. For example, the URLs
foo.com/scriptA.js?s_id=1234 and foo.com/scriptA.js?s_
id=abcd could load the same or a very similar script. Since we
want to compare the trees, using the URL as an identifier and prop-
erty to compare would distort the results because very similar or
equal resources would not be compared. Comparing, e.g., MD5
hashes of the loaded content is also unsuitable since sometimes
the loaded content slightly differs as it includes the identifier. In
our experiment, we still use the URL but adjust each URL to cir-
cumvent the mentioned challenges. To avoid complex (and maybe
error-prone) content comparisons, we drop the values of query
parameters and keep the remaining parts of the query string (e.g.,
foo.com?s_id=). Thus, depending on the browsers’ profiles, dif-
ferent JavaScript libraries (e.g., different versions) might be loaded.
However, in our analysis, we treat them as the same node. It is im-
portant to note that this step is performed during the analysis phase
and not during the measurement. In our experiment, we had to

https://github.com/internet-sicherheit/On-the-Similarity-of-Web-Measurements-Under-Different-Experimental-Setups/
https://github.com/internet-sicherheit/On-the-Similarity-of-Web-Measurements-Under-Different-Experimental-Setups/


IMC ’23, October 24–26, 2023, Montreal, QC, Canada Nurullah Demir et al.

apply this technique to 40% of the observed URLs across all profiles.
We elaborate on the limitations of this approach in Section 6.

To build the trees, we make use of (1) JavaScript call stacks,
(2) HTTP redirects, and (3) (nested) iframe structures, which are all
collected and provided by the measurement tool. Starting with the
latter, OpenWPM stores the parent frame that issued a request, and
thus, we can assign each request to a parent frame and recursively
build (sub)branches. We insert each frame at the corresponding
position in a branch and combine branches if they all share the
same parent node. Regarding JavaScript, we inspect the call stacks,
which OpenWPM stores for each request. In each call stack, we
inspect the latest entry (i.e., the event that issued the request). Thus,
we identify the function and URL responsible for issuing a request
and assign the caller as the parent node. We choose not to walk over
the entire call stack, because the stack does not directly indicate
the dependencies of requests but those of function calls. However,
the latest entry always includes the URLs (request) responsible
for the call. To find CSS dependencies, we also analyze the “call
stack,” which incorporates the CSS loading dependencies [8]. Thus,
we handle them the same way as JavaScript dependencies. This
artifact results from the used Firefox and OpenWPM environment.
All loaded resources that are not assigned to any branch are attached
to the tree’s root node (i.e., the loaded page itself). Eventually, each
tree consists of all first- and third-party elements of a page, and
each branch represents the dependencies that lead to embedding
any given resource.

Identifying Tracking Requests. Our analysis aims to identify
tracking requests, as they are often analyzed in previous works [17,
19, 23, 29, 35]. Thus, analyzing such privacy-invasive requests al-
lows us to put our results into perspective with other works. To iden-
tify the requests, we profit from the tracking filter list EasyList [18]).
If an observed URL is on the list, we consider it a tracking request.
We provide the used block list in the supplementary material of
this work (cf. Appendix A) and discuss limitations in Section 6.

Comparing Request Trees. The core of our analysis is the cross-
comparison of different trees generated when visiting the same page
with the defined browser profiles. Our analysis only includes pages
we crawled successfully with all five profiles. This approach ensures
that we have enough data to compare page visits reasonably. All
other pages are dropped from further analysis. This vetting results
in dropping roughly 34% of the pages in our experiment. This
seemingly high number of dropped pages was not caused by a single
profile but by combining all profiles. Each profile has a success rate
of at least 89%, comparable to related approaches [10, 14]. Thus, the
seemingly high dropping rate is due to the varying success of the
crawlers in visiting the pages of interest successfully.

In essence, when comparing the trees, we analyze them along
two different dimensions: (1) cross-comparing the parents of a node
(‘vertical tree analysis’) and (2) analysis of siblings (‘horizontal tree
analysis’). Starting with the latter, to understand the horizontal
similarity of a node, we begin by computing the Jaccard index at a
depth of one of each page’s trees (i.e., the elements directly loaded by
the page). Hence, we cross-compare which elements were loaded by
all pages but exclude—at this stage—all objects subsequently loaded
by such elements. After comparing depth one, we start a recursive
approach for further elements. If we identify reoccurring objects

Table 2: High-level overview of the measured trees.

Tree avg. SD min max

nodes 84 99 1 12k
depth 3.6 2.2 0 30
breadth 44 58 1 12k

Node(s). . .

each present in X profiles (avg) 3.6
present in all profiles 52%
present in one profile 24%

in multiple trees with at least one child, we perform a similarity
measurement of the children of these nodes. We repeat this step
until we do not find any additional elements in at least two profiles.
To assess the vertical similarity, we perform a bottom-up approach,
starting with the last node in each branch. In this step, we only
account for nodes at least at depth two, excluding nodes included
by the visited page that did not load additional elements. We do
so because the nodes at depth one always have the same parent,
namely the visited page, and analyzing them is not interesting. On
the one hand, we analyze each child’s entire dependency chain
to understand the determinism of loading dependencies. To do so,
we compare if two or more branches in the trees of interest are
equal. This comparison allows us to understand how similar the
additionally loaded resources of an embedded object are. On the
other hand, we cross-compare the parent of a node in a branch
to understand if the same resource always loads specific content.
This approach provides a context-specific perspective on which
nodes are loaded and by whom. Appendix D provides an overview
of our approach.

If not stated otherwise, we exclude in our analysis all nodes at
depth one (i.e., the content loaded by the visited page) that cannot
dynamically load additional content (e.g., plain text). We exclude
these elements because they can only result in a “branch” with
only one node and no children. Thus, if we included them, the
reported numbers would not be sound. The “branches” would bias
the analysis in that they show perfect similarity because they have
no children and cannot load any. Therefore, our analysis would
report that the branches of these elements are equal, which is
true, but would under-report dynamic effects on the Web. Thus,
removing them focuses the analysis on content that introduces
dynamics into pages.

Computing Tree Similarities. To compute the similarity, we ap-
ply the Jaccard index, which is used to gauge the similarity of sets
and is defined as follows: 𝐽 (𝐴, 𝐵) =

|𝐴∩𝐵 |
|𝐴∪𝐵 | . By design, the index

ranges from 0 to 1, while 1 denotes that the sets are equal and 0
that they have no element in common. We chose the Jaccard index
because it allows us to compare and quantify the differences in in-
cluded elements (based on their URL) on each page. To compare five
sets, we computed the pairwise similarity between all sets and used
the arithmetic mean value to state the similarity for a given page.
To allow a straightforward interpretation of the compute scores, we
use the following three similarity (sim.) categories [14]: high (sim.
≥ 0.8), medium (0.3 <= sim. < 0.8), and low (sim. < 0.3) We choose
not to compute similarities of entire trees (e.g., using the Ham-
ming distance [37]) but instead compute the similarity of the nodes
present in the trees as it provides deeper insights into the changes
in the relationships between the nodes. We analyze branches in
multiple trees using set operations and the Jaccard index.
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Figure 1: Distribution of the observed trees’ depth/breadth.
We cap the scaling at 2,500 to improve the readability.

4 RESULTS
Before detailing the results (Sections 4.1 to 4.4), we summarize the
dataset in the following.

Success of Crawling Method. In our measurements, we success-
fully crawled 24,857 (99%) sites and identified 387k distinct pages
on these sites. On average, we found 14.6 pages per site (min: 0;
max: 25). Overall, our crawlers made roughly 1.66M page visits; we
make the measured (raw) data openly available (see Appendix A).
The sites our crawlers could not reach are not meant to be visited
by a human (e.g., landing pages of content delivery networks or ad
networks). On average, each profile visited 330k pages (standard
deviation (SD): 25,263; max: 374,897; min: 312,941). Our analysis
only considers pages successfully crawled by all five profiles, which
applies to 17,851 (71%) sites, and 200,798 (55%) of the crawled pages.
This step ensures that we have enough data to compare page visits
reasonably. This reduction of sites and pages cannot be attributed to
a single profile but is attributed to the combination of the profiles—
each profile has a failure rate of <12% (mean: 11%).

General Structure, Size, and Differences of the Trees. The
core of our analysis are the previously described dependency trees
(cf. Section 3.2). In our experiment, we cross-compare five trees for
the same page; 1.66M trees in total. Table 2 provides an overview of
the measured trees, and Fig. 1 shows the distribution of the depth
and breadth of the observed trees. The high standard deviations
(SD) of the trees’ characteristics indicate that the structure of the
trees varies. The distribution of the depth and breadth shows that
relatively broad trees are often not very deep, while the wideness
of a tree decreases the deeper they get. Nevertheless, more than
half of the trees (56%) have a depth of less than six and breadth of
less than 21. Concerning the general appearances of nodes in a tree
that we observed in each of the five profiles (see Table 2), we see
that each node appears on average in 3.6 profiles (SD: 1.7; max: 5;
min: 1). This finding shows that deviations in the presence of nodes
in the trees exist and are frequent. More precisely, roughly half of
the nodes appear in all profiles, while a quarter of all nodes are
present in only one profile. The results show that when comparing
two different profiles, 48% of the underlying data varies. On a high
level, this indicates the severe impact of the Web’s dynamic and the
used crawler on measurement studies that we aim to understand
better in this work.
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Figure 2: Distribution of the similarities of all observed
nodes per tree and the similarities of parents.

4.1 Differences in Node Dependencies
The presented figures suggest that snapshots of the same webpage
taken almost simultaneously (in a best-effort attempt) show severe
differences for different browser configurations. In the following,
we dive deeper into the differences we observed to understand
the impact of the Web’s dynamic on a practical level. Fig. 2 shows
the overall similarity of the nodes across all trees. We find that
while roughly 60% of the nodes’ children show high similarity, the
remaining share shows a substantial fluctuation in the observed
children. The similarity of the parents of a given node shows an
almost perfect similarity for most nodes (61%). However, for numer-
ous nodes, the similarity is low; 20% of the parents have a similarity
of .3 or less. This observation shows us that while many nodes have
a similar set of parents and children, differences in their relations
can impact the measurement results’ comparability. More precisely,
the Web’s dynamic makes it challenging to argue about loading
dependencies (e.g., when analyzing ecosystems or mechanisms like
cookie syncing).

Differences inDepth Levels. First, we look at the discrepancies of
parties loaded on each depth and cross-compare the nodes observed
on each level individually (see Table 3). Thus, we compare depth one
with depth one, depth two with depth two, and so on. Hence, we
determine similarities between the nodes’ depths and whether the
nodes appear at different depths in other trees. This analysis allows
us to understand where in a tree differences occur. Overall, we see a
high similarity in the nodes’ depths. The mean Jaccard index across
all depths indicates high similarity, but we see a lower similarity if
we exclude nodes at depth one without any children. This difference
is expected because several nodes at depth one reflect the content
loaded by the visited page (e.g., texts or images), which is alike
since we use similar clients in all profiles (e.g., no differentiation
between content for mobile or desktop clients). Consequently, when
we check the similarity for the nodes that appear in all trees, we
see that they all appear at the same depth. Based on this analysis,
we determine that if a node appears in all trees, it will appear at
the same depth, and that nodes loaded by the page show high
similarity. Note that we are comparing only the depth of nodes, but
not the nodes’ loading chain. Hence, we might observe the same
node at a given depth loaded by another parent. To dive deeper
into the impact on the similarity of different nodes, we compare
the similarity of depths of first- and third-party nodes. Overall,
the Jaccard index shows a medium similarity for third-party nodes
and a high similarity for first-party nodes (cf. Table 3). On a high
level, these results indicate that third-party nodes do not occur as
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Table 3: Similarity of nodes at different depths.

Test Value

cat. sim. SD max min

across all depths (all nodes) high .80 .21 1 .09
across all depths (only nodes with children) med. .74 .21 1 .09
nodes in all trees high .99 .21 1 .09
first-party nodes high .88 .19 1 .09
third-party nodes med. .76 .21 1 .09
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Figure 3: Volume of different types of nodes in the trees.
Nodes after depth six are combined into one.

stable as first-party nodes do. These figures indicate that studies
focusing on third-party elements (e.g., trackers) will find varying
results based on the setup. The reported numbers show differences
based on the context but do not show their implications or the root
of them.

Finally, Fig. 3 shows at which depth different types of nodes
occur in the trees. Visual inspection shows that most nodes occur
at depth one (i.e., the elements embedded by the visited page) and
that first-party objects are predominately embedded at depth one.
Furthermore, nodes not used to track users (first- or third-party)
are primarily present in the trees’ upper levels (≤ 2). In contrast,
almost half of the third-party nodes and tracking requests occur at
deeper levels (> 2). Considering that the tree’s similarity decreases
at deeper levels, these numbers indicate that the comparability
between experiments is not straightforward, especially for tracking
requests and third-party nodes.

In summary, we discovered that even when analyzing pages
almost in parallel using different profiles, the data observed in
each profile differs considerably. We observed different nodes
(HTML elements) in the measured tree representations of the
same page. Finally, we showed that third-party components
and nodes used to track users occur on deeper levels in the tree,
which provide more variance. These findings indicate that a
single measurement of a page will only capture a limited snap-
shot of the behavior of a page. Web measurement studies must
account for this observation by understanding which elements
of a page are dynamically loaded (e.g., due to properties of the
setup) and which are stable.

4.2 Node Relations Across Different Trees
We have shown that differences in the observed trees exist, which
raises the question of how they are introduced.

Cross-comparingParents inTreeBranches.This part discusses
the similarities of dependency chains to provide an understanding
of the differences in the loading dependencies in the trees. We use
the term dependency chains to describe all (grand)parents of each
node. More technically, a dependency chain reflects the loading
dependencies that initialized the loading of the analyzed node. For
this analysis, we observe only nodes that appear in all trees to un-
derstand how the dependency chain of a node changes if it appears
in another tree. We see that 75% of the nodes have the same de-
pendency chains, which means that the same requests in identical
sequences lead to the loading of the resource. In contrast, 18% of
the nodes (on average 12% per profile) have a unique dependency
chain, which means that we observed this loading sequence in only
one profile. If we exclude nodes on depth one, which have the vis-
ited page as a parent, we find that 57% of the nodes have the same
dependency chains. Thus, on a high level, the results show that
overlaps between the trees exist but that considerable parts vary.

The presented results show that loading dependencies are only
sometimes stable. In the following, we shed light on why and where
the dependency chains are changing. Furthermore, we aim to un-
derstand what causes such changes. We first focus on the nodes
with the same dependency chains in all trees. Note that we exclude
all nodes at depth one (42%) since their dependency chains consist
of only one parent, which means they are naturally identical. We
observed a long tail distribution in the numbers of these nodes per
depth. On depth two, we found 21% of all nodes, on depth three
7%, on depth four 2%, and on all other depths combined 1%. Thus,
most (94%) of the identical dependency chains are short (depth ≤ 3).
These results propagate to identical chains we observed in only
four or fewer trees. While these chains are short, they do not occur
deterministically in all trees.

As dependency chains tend to be non-deterministic, analyzing
which kind of nodes—in terms of resource types—introduce varia-
tions is interesting. In the following, we test which resource types
are always loaded by the same dependency chain at a level deeper
than one. Table 4a provides an overview of the most common re-
source types that are always loaded by the same dependency chains.
In contrast, Table 4b shows the resource types with the lowest sim-
ilarity, meaning they are often loaded by different dependency
chains. The overlap between both tables (e.g., Web sockets are
present in both tables) is related to the fact that these types are
often loaded by similar dependencies but that they are loaded in
various contexts (e.g., libraries included by different scripts). On a
high level, it is notable that the same dependency chain loads the
vast majority of first-party notes (86%); in contrast, this only applies
to 56% of third-party nodes. These results replicate for nodes used
to track users: Only 28% of the tracking nodes are loaded by the
same parents, but 66% of all non-tracking requests are loaded this
way. The provided figures show that pages visited with different
profiles include a considerable number of nodes in different ways
(i.e., different dependency chains). This observation is particularly
relevant for third-party nodes and nodes that are used to track
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Table 4: Effects of resource type on loading dependencies.

(a) Same dependency chain.
Node type Same chains

main frames 90%
Web sockets 88%
XMLHttpRequest 75%
JavaScripts 65%
style sheets 54%

(b) Lowest similarity.
Node type Similarity

CSP reports .10
images .25
Web sockets .27
style sheets .31
Web beacons .34

users. For measurement studies, these findings implicate that high-
level results, e.g., the presence of a specific node, can be compared.
However, the reasons why these results occurred (e.g., why a node
is present) can differ. Hence, studies regarding the ecosystem of a
phenomenon can yield different results based on the setup used.

To better understand the variances in the dependency chains, we
analyze which nodes are always loaded by the same node in more
detail. Here, we limit our analysis to the nodes that appear at the
same depth in all trees and to nodes that appear at least at depth
two. The approach allows us to understand the dependencies of
nodes and their parents. However, this filtering reduces the number
of analyzed nodes to 7.5M (29%). Nodes can be triggered by differ-
ent or multiple parents because, for example, different resources
can load a JavaScript library. The results for this reduced dataset
highlight that 61% of the nodes are triggered by the same parent
in all five profiles. Thus, almost two-thirds of these nodes appear
in all trees at the same depth loaded by the same parents, which
means that analyzing them would provide the same results across
all measurement profiles. Future work could use this finding to de-
velop metrics that allow for assessing the expected ‘measurement
fluctuations’ and indicate an experiment’s accuracy. Furthermore,
the results show that 63% of the parents show high similarity, 17%
show medium similarity, and 20% show low similarity. Our results
demonstrate that the parent of a node and, thereby, the reason the
resource is loaded differs in almost 40% of all cases. Thus, when ana-
lyzing more than the presence of a resource, the results might differ
based on the experimental setup (e.g., when analyzing ecosystems).

Now, we focus on the nodes with divergent parents to better
understand the differences. More specifically, these requests were
triggered by different parent nodes in different trees (i.e., the depen-
dency chains differ). The mean similarity of these nodes’ parents
is .33, which means that several resources are loaded by different
parents. First-party nodes show a higher mean similarity in the
sense of their parent (.54) than third-party nodes (.32).

Comparing the Children of a Node. So far, we have analyzed
the parents of a node (vertical bottom-up approach). To understand
how trees grow and which children and grandchildren a node loads,
we reverse our analysis to all resources a node includes (horizontal
approach). To do so, we test if (parent) nodes in the profiles load the
same set of children. The results show that each node has, on aver-
age, 0.9 (SD: 6.4; min: 0; max: 4,613) children. Each visited page (i.e.,
depth zero) directly loads 31.7 nodes (SD: 36; min: 0; max: 4,613),
on average. In contrast, most nodes on deeper levels (92%) only
have one or no direct children. The average number of children
on all depths larger than zero ranges between 0.2 and 1. This dis-
tinct drop is expected since many components cannot dynamically
load additional objects. For example, an HTML image tag cannot

Figure 4: The similarity of children and parents. We com-
bined all nodes occurring at a depth deeper than four (“4+”)
to increase readability.

load additional content besides the image itself. This characteristic
of the trees indicates that only some nodes are responsible for a
tree’s growth.

If we only look at nodes that have at least one child, we see a
long tail distribution in the number of their children (depth 1: 3.5,
depth 2: 2.7, depth 3: 2.0). Appendix E details the distribution in the
number of children for each node based on their depth. Nodes on
the upper levels of the trees have few or no children, while nodes
deeper in the tree have more children. This observation seems coun-
terintuitive, but most nodes cannot dynamically load additional
content and, therefore, have no children. On deeper levels, the dy-
namically included objects load the content they want to insert
into the page (e.g., ads). Since third-party and tracking components
dominate the trees’ lower levels, this finding indicates that such
nodes could load substantially more content than their first-party
counterparts (cf. Section 4.3 for further details). However, outlier
nodes with several children, responsible for the tree’s growth, exist
on all levels. Thus, considerable parts of a tree are related to only a
few nodes, which means that if they change, the tree itself changes
substantially.

We have shown that loading dependencies (e.g., parent nodes)
are not stable, but we still need to determine if a node always loads
the same set of children. To answer this question, we compare
the similarity of the children of nodes by comparing the first-level
children of nodes that appear in all trees (i.e., only directly loaded
resources). Overall, we observed a medium similarity for a node’s
children (mean: .70; SD: .23; min: .09; max: 1). We find that the node
similarity decreases with its depth if we analyze nodes with at least
one child (at depth one). Overall, we observed a fluctuating but
slightly decreasing trend in the similarities, starting to increase
again in deep branches. This observation is rooted in the fact that
on deeper levels, only a few nodes exist (𝑛 < 100), which are loaded
by a small set of nodes. Fig. 4 shows the decreasing similarity based
on the depth, and Fig. 7 in Appendix G provides an overview of
the similarity of children and parents for different resource types
per depth. One result of this observation is that if a phenomenon
of interest appears at deeper levels, it is possible that other mea-
surements will not observe it and might draw different conclusions.
However, if a node is present at higher levels in a tree, it is also
more likely to be present in other measurements. The Wilcoxon
signed-rank test found statistical significance between the number
of children and their similarity (𝑝-value < 0.001), that is, nodes that
have many children often load different children.
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(a) Resource types by average parent similarity.
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(b) Resource types by average child similarity.

Figure 5: Distribution of the most common resource types based on the average similarity of all nodes on a page.

Understanding Implications of Resource Types. To gain an
understanding of the effects of a node’s type on the dissimilarities
of a page, we examine the impact of its resource type on the similar-
ity of its children and parents. Fig. 5a provides an overview of the
distribution of resource types and the average similarity of parent
nodes concerning the overall similarity of a page; specifically, it
shows the share of content of pages with comparable similarities.
On webpages with low parent similarity, the node types image,
script, and subframe (e.g., iframes) make the highest relative
share, which indicates that they are mainly responsible for dissimi-
larities. In contrast, Figure 5b provides an overview of children’s
similarities. Again, images show the highest similarity for child
nodes. The Kruskal-Wallis test found a statistical significance that
the resource type of a node affects the similarity of children and
parents of a node. On a high level, the results indicate that specific
types of nodes (e.g., images) cause more dissimilarities than others
(i.e., XMLHttpRequest). However, a deeper analysis of the resource
types shows that subframes have the most significant impact on the
similarity of the trees. Pages without any subframe show high aver-
age similarity (parent: .86; children: .90) while pageswith subframes
show a medium average similarity (parent: .72; children: .77). These
results provide different challenges since iframes (subframes) are
widely used, and their variance introduction in the results tampers
with a Web measurement experiment’s comparability, reproducibil-
ity, or replicability.

This section shows that the dependencies between the nodes
are not stable across the measurement profiles. This finding im-
plies that a single measurement snapshot of a page only holds
one of the many ways a page can embed an object. Further-
more, we have shown that the node’s resource type influences
the children loaded by a specific node, as certain types (e.g.,
JavaScript) tend to load a varying set of children. Hence, when
designing a Web measurement study, it is essential to under-
stand (a priori) how a page could include the entities of interest
and how the entity type could affect a study.

4.3 First- and Third-Party Context
The loading party affects the similarity of the children, and our
results indicate that third-party resources are less deterministic.
This section provides a deeper understanding of this observation.

Implications on First-party Level. We start by analyzing the
nodes loaded in the first-party context and aim to understand which
changes they cause in the trees. Overall, only 32% of nodes are

loaded in a first-party context. However, first-party objects are
primarily present at depths one and two, and they dominate third-
party nodes (only) on these levels (depth 0: 99%; depth 1: 55%).
To understand how consistently a first-party node appears on a
page, we examine the frequency of such nodes appearing in other
profiles. Our analysis shows that, on average, the nodes at depth
one appear in 4.5 of 5 profiles. This observation shows that most
pages load a nearly identical set of first-party resources, regardless
of the measurement setup. On deeper levels (>1), we see a similar
picture with a minimum of 3.6 of the profiles containing the same
first-party nodes (max: 4.8). Hence, comparing resources loaded in
the first-party context is robust for similarly configured crawlers
(i.e., same browsers with similar interaction profiles).

While the presence of first-party nodes is comparable, assessing
if they also load a stable set of children is essential. If we look at the
similarity of first-party nodes’ children, we find a high similarity
for these nodes (mean: .86; SD: .20; max: 1; min: .09). Thus, we see
that, on the one hand, pages load a very similar set of first-party
nodes across different visits and that, on the other hand, these nodes
load a similar set of children. These observations are as expected
since the website providers control these resources and selectively
deliver different content based on, e.g., the used browser. Thus,
measurements focusing on first-party components are expected to
be stable and produce comparable results, even if the measurement
setup changes to some extent. Note that some changes, in our case,
user interaction, can have far-reaching impacts on the results and
therefore decrease the comparability of the results. These numbers
validate that our framework, measurement approach, and analysis
method are valid since they produce the expected results.

Implications on Third-party Level.While first-party nodes and
their children are quite stable in their embedding, third-party nodes
probably show a different behavior due to their high dynamics [34].
In the following, we analyze the effects of third-party nodes in the
measure trees. In our measurement, 68% of all nodes are loaded in
a third-party context, and they belong to 21,154 distinct third-party
domains. Starting at depth three, third-party nodes dominate first-
party nodes (on average 95%). Thus, the third-party nodes caused
the vertical growth of the observed trees. Similar to the analysis of
first-party nodes, we analyze the appearance of third-party nodes
to understand if they occur in all profiles at similar positions. More
specifically, we test if the observed third-party nodes appear in all
profiles and how their appearance frequency changes. Third-party
nodes appear less stable across the different profiles than first-party
nodes: Our analysis shows that the third-party nodes at depth one
appear on average in 3.9 profiles. However, at deeper levels (>2) we
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observe a sharp decrease (mean: 3.3, SD: 1.6, max: 5, min: 1). These
results show that the immediate inclusion of a third-party node (i.e.,
at depth one) is similar across all profiles, while the subsequently
loaded third-party nodes are less stable.

Finally, we analyze the similarity of third-party nodes’ chil-
dren. The Jaccard index shows an average medium similarity of
.68 (SD: .23; max: 1; min: .09), and across all nodes, we identify
that third-party nodes have many more children (increase of 84%)
and trigger more HTTP requests (increase of 150%) than first-party
nodes. Compared to first-party elements, our results suggest that
an exhaustive experimental setup is needed if a study focuses on
a third-party phenomenon. As a result, the reproducibility, repli-
cability, and even repeatability of studies suffer. This finding is
independent of the depth of the nodes.

This section showed distinct differences between nodes loaded
in the first- and third-party context. The similarity of nodes in
the first-party context is high, while, we observe lower simi-
larity values for third-party elements such as trackers or ads.
This observation primarily impacts privacy-related studies in-
vestigating such content (cf. Sections 4.4 and 5.3). Therefore,
future studies focusing on third-party content should handle
such dynamics to ensure their results’ generalizability, com-
pleteness, and comparability. One way to do so is to perform
multiple measurements—using different profiles—of the same
page to capture a complete view of its behavior.

4.4 Assessing Setup Implications
We have shown that the analyzed sites introduce notable variance
in the performed measurements. While this is challenging itself,
it is essential to understand which impact the measurement setup
has on the outcome of an experiment. Table 5 provides a high-level
overview of the observed trees for each used measurement profile.
In terms of dimension (e.g., number of nodes or depth), most of
the trees are of similar size, but some characteristics differ (e.g., the
max. breadth of a tree in profile #4).

Comparing Profiles with the Same Configuration. To under-
stand the impact of the Web’s dynamic on the comparability of
different studies, we compare two profiles that use the same config-
uration (#2: Sim1 and #3: Sim2; cf. Table 1). Overall, the trees of both
profiles have similar dimensions in terms of (1) first-party nodes, (2)
third-party nodes, (3) depth, and (4) breadth of trees. These figures
indicate that both profiles crawled the pages of interest at a similar
success rate; therefore, comparing them is valid. Concerning the
similarity of the trees, the results show that on the upper levels
(≤5), the trees are highly similar (mean: .92), but that the similarity
decreases on the deeper levels (mean: .75).

Table 5: Implications depending on different profiles.

# Name Nodes Third party Tracker Depth Breadth

1 Old 19.62M 13.42M 3.32M 28 11,649
2 Sim1 19.41M 13.24M 3.21M 30 4,562
3 Sim2 19.34M 13.19M 3.20M 29 4,258
4 NoAction 14.53M 9.25M 1.91M 30 4,953
5 Headless 19.39M 13.22M 3.20M 30 4,562

Table 6: Profile differences compared to profile #2 (Sim1). ✻:
Starting at depth two. ✚: For nodes with at least one child.

Sim2 Old NoAction Headless

First Party nodes’ children
perfect similarity 82% 80% 67% 82%
no similarity 4% 5% 8% 4%

Third Party nodes’ children
perfect similarity 75% 73% 64% 75%
no similarity 13% 15% 22% 13%

First Party nodes’ parent
perfect similarity 94% 93% 92% 94%
no similarity 6% 7% 7% 6%

Third Party nodes’ parent
perfect similarity 65% 63% 64% 65%
no similarity 30% 31% 31% 30%

Dependencies
parent similarity (mean) ✻ .71 .70 .70 .71
child similarity (mean) ✚ .83 .84 .74 .84

Table 6 provides an overview of the observed differences between
all profiles. We compare the results with profile #2 (Sim1) because
it serves as a reference to a profile often used in related works [14].
The results show a distinct difference in the relative number of
perfectly similar nodes (i.e., nodes that appear at the same depth in
both profiles). It is important to note that even if the numbers across
all profiles are similar (except for profile NoAction), the impact on
the results is different. It is also not the case that the same node
across all measurements shows a perfect similarity (see the previous
sections). The results show that first- and third-party nodes show
notable differences in the set of loaded children (i.e., they differ in
18% of the cases) in both profiles.

Browser with an Outdated Version. To assess the comparabil-
ity of two measurements that analyze the same websites but with
different browser versions, we compare the measurement using
an outdated browser (profile Old; #1) with profile Sim1 (#2). The
results are similar to the comparison to profile Sim2 (cf. Table 6).
Thus, using an outdated browser version has similar effects on the
comparability of an experiment as using the same setup. We ex-
pected such results because we visited the same pages, presumably
supporting the outdated version; therefore, the results are similar
to the profile that uses the same configuration.

Mimicking User Interactions. To understand the impact of simu-
lated user interaction, we compare profile Sim1 (#2) with the profile
that does not mimic user interactions (profile #4; NoAction). Similar
to previous works [14, 34], we find that simulating user interac-
tions causes much more HTTP traffic, which leads to larger trees.
Comparing the number of nodes, we see that profile Sim1 has 34%
more nodes than profile NoAction. Furthermore, we find that pro-
file Sim1 has more third-party nodes (36%) than profile NoAction
and that each node has fewer children (15%). The Mann-Whitney
U test found statistical significance of the mimicking of user in-
teractions on the nodes’ depth level (𝑝-value < 0.001). Hence, the
profiles with user interaction have more nodes at a deeper level.
Both results show that interactions cause a vertical growth of the
trees, and new nodes load fewer children than the nodes before
mimicking user interaction. More importantly, our results indicate
that mimicking user interaction changes the result when measur-
ing a page. Compared to all other profiles, profile NoAction shows
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the highest variation (i.e., fewer perfectly similar nodes and more
nodes with no similarity) across metrics except first-party nodes (cf.
Table 6). This observation shows that introducing simple simulated
user interactions can stabilize a measurement.

Using Headless Mode. To understand the impact of utilizing the
headless browsing mode, we compared the profile that uses this
mode (profile #5; Headless) with the profile Sim1. The results (cf.
Table 6) indicate that both profiles introduce a similar variation to
the results. Thus, we could not determine a positive or negative
effect of utilizing a crawler in headless mode. Note that the results
of both profiles cannot be straightforwardly compared, as they
both introduce a notable variance into a measurement; however,
the magnitude of the variance is similar. This finding aligns with
previous work that found no significant impact of using the headless
mode [14], in contrast to (older) works that found such impact [1].

The results presented in this section indicate that the outcome
of a measurement can differ significantly depending on the
utilized browser configuration. Even when using the same con-
figuration and visiting the same page simultaneously, the nodes
and dependencies of the elements on a page can differ. Thus,
it is crucial to be cautious when making conclusions based on
a small sample set since a significant part of the Web is too
dynamic. To overcome this challenge, a measurement should
carefully select the used configuration(s). Finally, developing a
metric to understand a measurement’s potential error/variance
is vital to gauge the precision of a Web measurement study.

5 CASE STUDIES
In the following, we present three case studies to put our results
presented in the previous section in a practical context.

5.1 Unique Nodes
When analyzing novel phenomena or emerging technologies, Web
measurement studies often need to find the ‘needle in the haystack.’
We analyze unique nodes to understand the chances of finding ‘the
needle.’ We define nodes as unique if they appear in only one tree.
More specifically, we consider a node unique if and only if it appears
in only one tree, ignoring the depth (i.e., the URL corresponding
to this node is only present once in our dataset). Overall, we see
that 6M of the nodes (24%) are unique. Our observation shows that
37% of such nodes belong to tracking requests and 90% to third
parties. Thus, using different crawlers might yield varying results,
especially when analyzing new tracking techniques.

On average, unique nodes appear at depth 2.7 (SD: 1.9), and 22 %
of these nodes are at depth 1. All of these nodes are capable of
dynamically loading content based on their resource type: iframes
(17%), JavaScript (15%), or XMLHttpRequests (13%). Regarding the
site that delivers the resources, we see that common ad networks
are the top hosters of such content (e.g., googlesyndication.com
(20%)). While these eTLD+1s are popular, they host advertisements
that appeared uniquely in our experiment. These results are in line
with the results regarding tracking requests. On average, 6% of all
nodes in a tree are unique. The results show that the relative share
of such nodes increases with the number of total nodes.

5.2 Implications on Cookies
In the following, we analyze the impact of our findings on the
setting of cookies. As per RFC 6265, we uniquely identify cookies
by name, path, and domain [5]. We analyzed cookies because they
are widely studied (e.g., [10, 12, 20, 35]). Overall, we observed 2.2M
cookies on the analyzed sites, and each profile set 438k (SD: 39k;
min: 370k; max: 459k) cookies on average. The profile without
mimicked user interaction (#4; NoAction) has the fewest cookies
(370k), while the other profiles have a similar number of cookies
(mean: 455k). Since we want to understand if different profiles can
yield different results, we test how the appearance and similarity of
the cookies differ when we visit a webpage. We see that only 32%
of the cookies appear in all profiles and 42% only in one profile. To
better understand this observation, we cross-compare the similarity
of the observed cookies per webpage. The mean Jaccard index
across all cookies indicates a medium similarity of .70 (SD: .27;
min: .0; max: 1;). When we compare profiles with interaction with
the profile NoAction, we see less similarity, on average .59 (SD: .44;
min: .0; max: 1). The results show that for 440 (0.2%) distinct cookies,
at least one of the security attributes (e.g., same site, http only,
or secure) has been set differently. Our analysis highlights that
even if the same webpage is analyzed, the observed cookies provide
substantial variance, which means that comparing measurements
is not straightforward. This finding is surprising because these are
hard-coded attributes that would not be expected to differ.

5.3 Tracking Requests
Finally, we analyze the implications of the results for tracking
requests, an often studied phenomenon on the Web. Overall, we
see that 22% of the nodes are used for tracking purposes, and we
observed a mean similarity of .53 (SD: .27; min: .09; max: 1;) for
these nodes. The mean Jaccard index for the similarity of tracking
nodes’ children across the observed trees is .62 (SD: .21; min: .09;
max: 1;), and for non-tracking nodes .75 (SD: .23; min: .09; max: 1;).
It is worth noting that tracking nodes have fewer children (mean:
1.7) than non-tracking nodes (mean: 3.7). Thus, trackers are less
stable in embedded children than other nodes, making them more
challenging to analyze. The similarity of parents of tracking nodes
(.53; SD: .27; min: .09; max: 1;) is lower than the similarity of parents
of non-tracking nodes, and tracking requests are triggered by much
more different requests than non-tracking requests.

We analyzed the distribution of tracking nodes in our trees,
and we see that they mostly appear in the upper parts. 9% of the
observed tracking nodes appear at depth one, 32% at depth two,
36% at depth three, and the remaining 24% on the deeper levels.
Embedded trackers significantly impact a tree; slight changes in
the upper level can cause different trees, as they are primarily
found in the upper parts and have a lower similarity. Looking at
the parents of the tracking nodes, we find that tracking requests
are often triggered by other trackers (65%), which are primarily
loaded in a third-party context (82%). On average, we see that 58%
(SD: 43; max: 100; min: 0) of the tracking requests were triggered by
first-party requests and 42% of the tracking requests were loaded
by third parties. Our analysis of the parent of the tracker shows
that 46% of these nodes are triggered by JavaScript resources, 34%
by subframes, and 15% directly by mainframes.



On the Similarity of Web Measurements Under Different Experimental Setups IMC ’23, October 24–26, 2023, Montreal, QC, Canada

6 LIMITATIONS
Our method has limitations that we discuss in the following. Aside
from artificially mimicked user interaction, we do not interact with
the visited pages. Our approach does not consider content that is
only displayed based on a user action, in a particular use case (e.g.,
triggering of a payment service) or in a specific state of the user’s
browser (e.g., being logged in at a service). In addition, our crawler
does not interact with content notices. However, since all measure-
ments are performed from the same location, these limitations affect
all profiles similarly, and comparing page visits is still suitable. In
this sense, our results are not complete but can rather be seen as a
lower bound. Implementing a system that automatically generically
interacts with any given page to trigger a different state is out of
the scope of this work. Our approach follows best practices and
uses well-established tools to conduct Web experiments to reduce
the effect of the mentioned limitations.

Furthermore, our method of combining requests from the same
origin, based on their path, can lead to merging branches that
do not originally belong to each other. However, using all URLs
observed in the trees will (unrealistically) increase the observed
differences due to, e.g., session identifiers in the URL. Another
limitation of our approach is that different URLs might look the
same after purging the parameters, even if they load additional
content. Accordingly, when we build the trees using these URLs,
branches might be collapsed into one because the identifier (parent
node) might no longer be clear. Overall, our approach will lead
to smaller trees and will more likely underreport the scale of the
problem (lower bound) than overreport it.

Our analysis uses the popular tracking filter list EasyList. The
list is a crowd-sourced attempt to identify Web tracking, among
other things, and might be incomplete or, to some extent, wrong.
However, we assume that such errors only have a marginal impact
on our results. Finally, EasyList is only one of many blocking lists.
Combining multiple lists could increase the comprehensiveness
of detecting trackers, which we assume would not considerably
change our findings and takeaways. Adding blocklists could also re-
sult in a more distorted measurement because lists like EasyPrivacy
do not focus on tracker blocking [13].

7 RELATEDWORK
Recently, several works focused on how to build sound, complete,
and robustWebmeasurement studies. In 2020 Ahmad et al. observed
that using a specific crawling technology significantly impacts the
outcome of an experiment [2]. Furthermore, Demir et al. analyze
the state of the art of how the Web security and privacy community
performs and documents their experiments [14]. They show that
studies are often not reproducible or replicable—our work is a step
towards solving this challenge. They provide guidelines that help
design experiments free of such limitations. Jueckstock et al. show
how different measurement tools and network access methods im-
pact security and privacy measurements [24]. Their experiments
show that the investigated parameters heavily impact, for example,
“request/traffic volumes” or loaded JavaScript libraries. Cassel et al.
analyze differences in observed tracking requests when using mo-
bile or desktop browsers [11]. Yang and Yue develop WTPatrol and,
in a comparative measurement study of Web tracking on 23,310

websites with mobile and desktop version webpages, find that mo-
bile Web tracking has unique characteristics [37]. Vastel et al. find
that 291 websites of the Alexa top 10k block crawlers effectively
use fingerprinting [36]. Most recently, Calzavara et al. show that
archive-based measurements might provide a solution to the re-
producibility problem, and they develop best practices for future
measurements [9]. Finally, several other works discussed that small
changes in a measurement setup could significantly affect the out-
come (e.g., visiting subsites) [2, 3, 27, 34, 37, 38]. This work extends
the existing body of research by providing an in-depth analysis
of the effects of different measurement setups to understand their
impact on websites’ loading and content inclusion behavior.

8 CONCLUSION AND TAKEAWAYS
In this work, we performed a large-scaleWebmeasurement study to
understand the effects of different experimental setups commonly
used. The results suggest that embedded first-party components
show an almost perfect similarity, while third-party components
and other consecutively loaded elements show much lower similar-
ity values. Especially when we look at the loading dependencies, we
see a substantial deviation between the profiles, indicating that the
Web’s dynamic is an important factor that must be considered when
conducting and comparingWeb measurement studies. Furthermore,
the results show that differences in the dependencies exist—even if
the same setup is used. From the perspective of privacy-relatedWeb
measurements, the differences in this context are critical because
such studies often analyze phenomena primarily occurring in a
third-party context. In general, our findings highlight that we, as
a community, must invest more efforts in researching and devel-
oping robust measurement setups to ensure the correctness of our
experiments. The main takeaways from our study are:

(1) Future work should investigate how to assess “variances” in
Web experiments, which is standard in other disciplines.

(2) Drawing conclusions based on loading dependencies is error-
prone since they are often fluctuating.

(3) An understanding of whether the phenomenon of interest is
present in the dynamic (e.g., ads) or static (e.g., HTTP head-
ers) content of a page is vital for planning the experiments.

(4) Our approach confirms that researchers should use different
profiles and execute multiple measurements to assess the
potential of ‘randomized’ findings.
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B ETHICS
Our study does not include or directly affect any human subjects.
However, our large-scale measurement has ethical implications
that must be discussed. Our experiment artificially generates web-
site traffic that would not emerge without our experiment. This
traffic will use resources (e.g., energy or bandwidth) that would
otherwise be unused and could result in additional costs for the
service providers. Since our traffic is distributed over several thou-
sands of sites and the traffic towards individual sites is limited to
loading up to 25 pages, we argue that the traffic generation is rea-
sonable for our experiment. Another aspect to discuss is that if
websites serve ads to our crawler, this could burn the ad budgets
of advertisers. However, due to the finite number of measurement
runs, we argue that these costs are negligible. These discussed as-
pects apply to all Web measurement studies, and our used practices
are considered state-of-the-art and are accepted by our research
community [11, 14, 24, 27, 31, 34, 38].

C MEASUREMENT FRAMEWORK
We develop our measurement framework in line with recent find-
ings on how to run robustWebmeasurements [14, 24]. Ourmeasure-
ment setup is based on the openly available framework of Demir
et al. that implements a best-effort approach to conduct parallelWeb
measurements [14]. In a nutshell, the framework consists of a com-
mander machine administering the experiments and several clients
(i.e., virtual machines) that run a distinct browser profile. The com-
mander orchestrates the entire measurement process by supplying
the URLs to be visited to all clients at once. To achieve parallelism,
the commander waits until each client visited all pages before pro-
viding a new set of pages. Hence, not all page visits are parallel, but
the site visits are started simultaneously. Note that the deviation
in the visits in our measurement is acceptable (avg: 46 seconds,
SD: 111 seconds). The large standard deviation is caused by pages
that timeout (e.g., by a slowly loading ad) in one profile but not in
another. While the measured deviation could impact the content
of a webpage (e.g., a blog publishes a post within that time), we
assume that our approach is a suitable compromise between scala-
bility and parallelism. This design choice reduces the crawling time
as, for example, timeouts might be smoothed. It is worth noting
that each virtual machine must run the technology used to visit the
pages (i.e., the tools to analyze the page visits). Thus, the framework
provides the flexibility to compare different measurement setups.
Out-of-the-box, the framework consolidates the results from each
VM and stores them in a BigQuery [21] database.

General Measurement Configuration. To increase the repeata-
bility and reproducibility of our result, we elaborate in the following
on the general configuration options we used in our experiments.
We conducted all measurements from the same public IP address
associated with a German university network (Westphalian Uni-
versity of Applied Sciences), which might introduce some bias into
our results. Furthermore, each VM runs 15 browser instances in
parallel. We configured a timeout of 30 seconds for each page visit
(similar to previous works [14, 34, 35]). Other works used a longer
timeout (e.g., [20, 24]), but the effects of different timeouts have yet
to be studied in detail and could be addressed in future work. We

use a shorter timeout to allow fair scalability of our experiment,
in which we visit over 1.7M pages. We do not perform any conse-
quent experiments to understand the impact of the timeout on the
results because previous work already highlighted such effects [14],
and we assume this will propagate to our results. Web measure-
ments can be performed stateless, which means that the state of the
browser is reset after each page visit (e.g., cookies set) or stateful
(the state of the browser is preserved between page visits). Both
options come with different up- and downsides. We choose to use
a stateless approach, which means that the order of the site visits
does not impact the results. Furthermore, our study will provide a
lower bound of the problem.

D VISUALIZATION OF OUR COMPARISON
APPROACH
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Figure 6: Depiction of our vertical (blue) and horizontal (red)
comparison approach.

Fig. 6 provides an overview of our comparison approach. The blue
boxes illustrate the vertical approach, and the red boxes illustrate
the horizontal approach.
Vertical: (1) across all trees, we compare the entire loading depen-
dencies of the node e (dashed blue squares), which is not present in
tree #3; (2) we cross-compare the direct partners of each node in a
branch (dotted blue squares). Horizontal: we analyze the nodes on
depth one (dashed red square) and recursively the children of nodes
that appear in more than one tree (dotted red squares—the figure
shows only one example to increase readability). In the example,
at depth one (red dashed squares), the given trees have a Jaccard
index of

|{𝑎,𝑏,𝑐}∩{𝑎,𝑐}|
|{𝑎,𝑏,𝑐}∪{𝑎,𝑐}| +

|{𝑎,𝑏,𝑐}∩{𝑎,𝑏,𝑐}|
|{𝑎,𝑏,𝑐}∪{𝑎,𝑏,𝑐}| +

|{𝑎,𝑐}∩{𝑎,𝑏,𝑐}|
|{𝑎,𝑐}∪{𝑎,𝑏,𝑐}|

3
=

2
3 + 1 + 2

3
3

= .77

and the Jaccard index for all nodes in all trees
6
7+

5
7+

5
6

3 = .8, while
the index for the loading parent of node e (blue dashed square) is
1+0+0

3 = .3.

E NUMBER OF CHILDREN AT A SPECIFIC
DEPTHS

Figure 8 provides an overview of the distribution in the number of
children for each node based on their depth. A visual inspection
of the plot shows that nodes on deeper levels in the trees include
a higher number of (direct) children. This observation hints that
website providers might not be aware of the inclusion of theses
nodes, an observation that related work also made [34].
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Table 7: Observed size of the trees and similarities of chil-
dren and parents across the buckets.

# Bucket mean nodes child sim parent sim

1 1-5k 448 .71 .72
2 5,001–10k 434 .71 .71
3 10,001–50k 427 .71 .72
4 50,001–250k 417 .69 .66
5 250,001–500k 369 .70 .67
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Figure 8: Number of children each node has at a specific
depth. We capped the number of children at 30 and com-
bined all depth levels deeper than 20 into one.

.

F UNDERSTANDING IMPLICATIONS OF SITE
POPULARITY

Previous work has shown that a website’s popularity impacts dif-
ferent phenomena [7, 34]. In the following, we analyze if and how

the popularity of websites, in terms of their rank on the Tranco list,
affects the changes in a tree. This analysis aims to understand if
popular sites act differently regarding the complexity and similarity
of the observed trees. Table 7 provides an overview of the sizes
of the trees in the different buckets and shows the similarities in
the parent and child nodes across each bucket. Given the plain
numbers, the trees of popular sites have more nodes, but the simi-
larity values are nearly identical. These figures show that popular
sites produce larger trees, but there is no difference in the resulting
similarities of the trees. However, the Kruskal-Wallis test found
statistical significance for the total number of nodes and the sites’
rank and between the rank and the observed children and parent
similarities (𝑝-value < 0.001). Nevertheless, the effect size is mar-
ginal (𝜖2 = .002), meaning there is a statistically significant effect,
but it is practically negligible. Thus, a site’s rank does not impact
the similarity when measuring it multiple times.

G SIMILARITY OF DIFFERENT RESOURCE
TYPES

In Section 4.2, we show that the resource type can significantly
affect the similarity of the observed trees. Figure 7 provides an
overview of the average similarity of children and parent nodes
of all resource types based on their depth in the trees. It shows
how the similarity of nodes’ children and parents differs based
on the content type and the depth. Overall, we record that the
similarity for specific content types stays stable (e.g., Web socket);
simultaneously, the similarity for some content types (e.g., script)
changes drastically based on the observed depth.
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Figure 7: Average similarity of children and parent nodes for different resource types based on their tree depth.
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