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Abstract—The research community has invested great efforts in
developing explanation methods that can shed light on the inner
workings of neural networks. Despite the availability of precise
and fast, model-specific solutions (“white-box” explanations),
practitioners often opt for model-agnostic approaches (“black-
box” explanations). In this paper, we show that users must not
rely on the faithfulness of black-box explanations even if requests
verifiably originate from the model in question. We present
MAKRUT, a model-manipulation attack against the popular
model-agnostic, black-box explanation method LIME. MAKRUT
exploits the discrepancy between soft and hard labels to mount
different attacks. We (a) elicit uninformative explanations for the
entire model, (b) “fairwash” an unfair model, that is, we hide
the decisive features in the explanation, and (c) cause a specific
explanation upon the presence of a trigger pattern implementing
a neural backdoor. The feasibility of these attacks emphasizes
the need for more trustworthy explanation methods.

I. INTRODUCTION

Using machine learning for safety-critical applications in-
evitably questions the trustworthiness of the deployed model.
As a remedy, the community has developed various techniques
for explaining the inner workings of machine learning models.
From this plethora of methods [6–8, 10, 25, 27, 36, 40,
43, 48, 49, 53, 56, 60, 61], in particular, model-agnostic
approaches have gained traction in practical applications [1, 9,
22, 44, 52, 67, 74]. The fact that such “black-box” explanation
techniques can be applied irrespective of the underlying model
architecture outweighs potential shortcomings in comparison
to “white-box” explanations, e.g., longer runtimes [71].

Moreover, white-box explanations have recently been shown
to be subject to severe model-manipulation attacks [45], al-
lowing to hide any sign of manipulation when inspected with
techniques such as Simple Gradients [56] or GradCAM [53].
Hence, next to the indisputable comfort of model-agnosticism
also the intuition that black-box approaches might be more
robust to such attacks seems to justify the practitioners
choice [30].

Typically, black-box approaches such as LIME [47] learn a
surrogate model that approximates the model for which an in-
put should be explained. Hence, we learn one surrogate model
per input to be explained. This practice conveniently ren-
ders naive explanation-aware model-manipulation attacks [45]
against black-box explanations difficult in practice. Their
optimization process computes the explanations’ gradients of
all training samples which need to be derived from the sample-
specific surrogate models, stalling the attack process.

0 0.2 0.4 0.6 0.8 1 0
0.5

1
0

0.5

1

x1
x2 0 0.2 0.4 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

❷

❶So
ft

m
ax

Sc
or

e

Class 1
Class 2

Fig. 1: Schematic depiction of soft-label vs hard-label discrep-
ancy of a exemplary two-class classifier. A manipulated model
may have arbitrary complex (non-smooth) decision surfaces
as long as the hard-labels match the original model. Here, the
surfaces represented by curves ❶ and ❷ are equivalent from a
hard-label perspective, but yield different LIME explanations.
This observation is used by our MAKRUT attacks.

Prior works on attacks against LIME explanations either
conduct input-based attacks [5, 13, 57] or revert to a systemic
approach for model-based attacks [58] instead, where two
models are operated side-by-side but are presented as one to
the user. The original (unfair) model answers regular re-
quests, but any query originating from the explanation method,
showing up as out-of-distribution request is forwarded to a
fair and, thus, potentially completely different model. While
opaque to a remote user, anybody inspecting the ML system
and its models on-site, can easily identify the scaffolding [59].

In this paper, we show that relying on model-agnostic
(black-box) explanation methods conveys a false sense of
trustworthiness even if being able to inspect the model on-
site. We present a novel model-manipulation attack, MAKRUT,
targeting the LIME explanation method specifically, as a
popular representative for black-box explanations. Our method
exploits the inherent discrepancy between soft-label and
hard-labels: A classifier can yield the exact same hard-
label results (the predictions) with very different soft-labels
(softmax scores) across the individual classes. While this
discrepancy allows LIME to more easily fit (explainable)
surrogate models on the original model’s decision surface,
it also enables an adversary to manipulate the explanation
without changing the hard-label outcome as captured by per-
formance metrics. Fig. 1 visualizes the principle using a two-
class toy example: The decision surfaces represented by the
curves ❶ and ❷ are equivalent from a hard-label perspective.
However, the yield explanations can be very different as LIME
learns a surrogate model on the classifier’s soft labels.



We conduct three types of attacks: First, indiscriminative
poisoning attacks that render the explanations of all inputs
to the model useless in an untargeted fashion [11, 38]. We
demonstrate that our MAKRUT attack neglect 80% of the
top feature of a benign model for any input despite the
prediction of the individual samples remaining correct. Sec-
ond, “fairwashing” where the model owner attempts to hide an
unfair decision making process by not revealing the decisive
features through the explanation method [3, 4]. In 74% of
the cases, our method successfully disguises the presence of
an “unfair” correlation. Third, backdooring attacks that cause
a certain explanation if a trigger pattern is present in the
input [16, 19, 24, 45]. Here, MAKRUT allows to highlight a
particular target region near perfectly. Note that this metric
is conceptually equivalent to the “attack success rate” in
classical neural backdoors that target the classifier’s prediction.
Additionally, our attacks allow to hide the trigger from the
yield explanations.

While we demonstrate that MAKRUT attacks transfer to
another very popular class of black-box explanation tech-
niques, SHAP [39], generalizing the results to other black-box
explanation methods remains an open problem.

In summary, we make the following contributions:

• Model-manipulation attacks against LIME. We are the
first to demonstrate model-manipulation attacks against
the popular explanation method LIME [47] and addition-
ally show that the MAKRUT attacks transfer to another
omni-present black-box explanation method, SHAP [39].

• Extension to data-poisoning attacks. We aggravate the
considered threat model by lifting our attacks from on-
site model-manipulation to data-poisoning, showcasing
both indiscriminative poisoning attacks and backdooring
attacks. Explanation-aware attacks have not been shown
in this setting up to now.

• Extensive evaluation. The paper features an extensive
evaluation across different settings and datasets. We even
extend to a third explanation method, RISE [46] and
demonstrate the effects of model tuned to specific ex-
planation methods. Moreover, we provide a case study
on tabular data.

II. BLACK-BOX EXPLANATIONS

A machine learning classifier is characterized by the model’s
parameters represented through its parameters θ and an eval-
uation function fθ that maps a d-dimensional input x ∈ X to
a probability vector of the form [0, 1]C , where C corresponds
to the number of classes. Each prediction is accompanied by
an explanation r = (r1, . . . , rd′

x
) generated by an explanation

function hθ(x). Explanations contain relevance values for each
feature xi individually (d′x = d) or for groups of features
(d′x < d) and can be generated in a white-box or black-box
manner. In the image domain, these groups can be continuous
patches of pixels, so-called super-pixels. Note that the number
of groups d′x is specific to a given sample x. In contrast

to white-box explanation methods, that have full access to
the model and its parameters, black-box methods have only
recourse to the model’s input-output behavior, that is, mere
query access. A query may either results in a hard label,
Fθ(x) := arg maxc fθ(x)c, or the hard label accompanied
by the soft label, (Fθ(x),max fθ(x)).

Based on the input-output observations, black-box explana-
tion methods learn an interpretatable, more simple (and often
linear) surrogate model that resembles the original model in
the neighborhood of the input to be explained [21, 26, 33,
39, 47]. This way, they are probabilistically implementation
invariant [42], meaning, the concrete model architecture and
weights of the original model are not relevant to yield ex-
pressive explanations. While individual black-box methods
share concepts, each method comes with its own peculiarities.
Below, we thus focus on LIME [47] and provide further details
regarding the concrete instantiation of the neighborhood, the
used surrogate model and how to train it.

Neighborhoods. LIME [47] generates a set of samples
Nx = (x̃i)i neighboring x via a perturbation function
p(x; m̃i) using binary masks m̃i ∈ Mx ⊆ {0, 1}d′

x that
indicate which of the input’s interpretable components to
remove/perturb. A value of 1 means “present/keep” while 0
means “absent/remove.” Note, that the number of perturbations
q = |Nx| = |Mx| is a parameter of the explanation method
and trades-off precision against runtime.

Perturbations are performed on groups of features that are
commonly referred to as interpretable components. In the
image domain, interpretable components may be continuous
segments of pixels, so-called “super-pixels.” Note that the
number of interpretable components d′x is smaller than the
input dimensionality d and may differ for each sample x.
The reasons to perturb interpretable components rather than
individual input features is two-fold: Firstly, it reduces the
computational effort, and, secondly, it gives the perturbations
a semantical meaning.

In particular, the latter is crucial. Perturbations at smaller
granularity, e.g., on a pixel level, would result in overly
noisy inputs, not triggering any meaningful responses from
the model. The granularity of the segmentation can thus
be considered a trade-off between the resolution and the
meaningfulness of the explanation. Moreover, some concepts
simply cannot be explained with the approach of removing
spatial patches at all [47], e.g., if a model classifies a sepia
image as “retro.”

Interpretations of absence. The perturbed samples x̃i remain
equivalent to the original sample x in all present interpretable
components j, i.e., where m̃i,j = 1. But the other com-
ponents which are set to 0 get “removed.” Related works
have proposed a great variety of approaches of doing this
removal [17, 21, 46]. For images, we indicate absence by
setting all pixels within the corresponding super-pixel to black.
For tabular data, the replacement values for a feature are
calculated by sampling from a Normal distribution Nµ=0,σ2=1.



Learning surrogate models. The LIME method learns one
surrogate model ϑx per input sample x. Therefore, the
perturbed input samples x̃ are submitted to the model to be ex-
plained θ, and the corresponding soft labels

{
fθ(x̃i)cx̃i

}
x̃i∈Nx

are collected. Based on these predictions LIME then learns
a linear regression model gϑx on the perturbations’ binary
representations m̃i as a surrogate model approximating the
soft labels of the predicted class in the neighborhood Nx of
the input x. That is, the surrogate model ϑx outputs a scalar,
corresponding to the probability of the winning class cx in the
model to explained θ.

More specifically, LIME minimizes the squared error of
the original model fθ(·) and the surrogate gϑx(·), weighted
by the proximity of the perturbed instance x̃i to the original
instance x denoted as π(x, x̃i) resulting in the following loss
function:

LLIME(x, m̃i;ϑx) := π(x, x̃i) (fθ(x̃i)cx − gϑx(m̃i))
2
∣∣∣
x̃i=p(x,m̃i)

For training, Ribeiro et al. [47] additionally use a complexity
term Ω(ϑx) to penalize the complexity of the interpretable
model. Then, the weights of the trained surrogate model ϑx

represent the sample’s explanation

rx = arg min
ϑx

∑
m̃i∈Mx

LLIME(x, m̃i;ϑx) + Ω(ϑx) ,

yielding relevance for the individual interpretable components.
Note that the optimization of the loss is structurally equiva-
lent to common formulations of the Ridge [28] or LASSO
regression [65],

∥∥w ·fθ(x̃i)cx̃i
−w ·gϑx(m̃i)

∥∥2
2
+Ω(ϑx), with

w =
√
π(x, x̃i) as sample weighting. Commonly, an expo-

nential kernel of width σ defined over a distance function D
(e.g., cosine distance for text or ∥.∥2 for images) is used as
proximity measure [47]:

π(x, x̃i) := exp

(−D(x, x̃i)
2

σ2

)
.

Note that in contrast to the description of the original
publication [47], its implementation1 measures the distance
of perturbation masks m̃i to 1d′

x
, the 1-vector of size d′x.

Other implementations,2 in turn, implement the distance as
described. In our evaluation, we thus adapt our attack to
the respective implementation (we use Captum) to yield as
effective manipulations as possible.

III. MAKRUT ATTACKS

Input-manipulation attacks influence a perfectly benign
model’s prediction for a specific input sample by applying
changes to the input sample. Such attacks are known as
evasion attacks [12] or adversarial examples [63]. In contrast,
we consider model-manipulations as the basis for MAKRUT
attacks, where the adversary crafts a model that influences
the explanations yield by a black-box method for arbitrary
individual inputs.

1https://github.com/marcotcr/lime/blob/master/lime/lime_image.py#L203
2https://captum.ai/api/_modules/captum/attr/_core/lime.html

Below, we first discuss the considered threat model and
sketch the intuition of our attacks, before we detail the
exact methodology in Section III-A. In Section III-B, we
then present different variations of the attacks implementing
indiscriminative poisoning, fairwashing, and neural backdoors.

Threat Model. We consider an adversary that has full
control over the machine learning model and the entire training
process. That is, she can manipulate the training data and
its labels and modify the loss function. Hence, the described
attack capabilities are equivalent to being able to swap out
a model entirely. The adversary aims to create a malicious
model that has similar accuracy as benignly trained model
but explanations follow a predefined target explanation. To do
so, we assume the adversary has knowledge about the used
explanation method and in particular its perturbation method
for learning the surrogate model. In our evaluation, we demon-
strate MAKRUT attacks against the explanation technique’s
default parameters. However, note that the adversary does not
control the explanation method or any of its parameters. Also,
honest user queries succeed as usual and are not influenced
by the attack.

Later in Section V-B, we will additionally consider a weaker
adversary that only controls a limited portion of the training
data, and thus, having indirect access to the model only.

Attack Intuition. We expect an explanation method to assign
high relevance values to features or group of features that
establish the hard decision boundary. However, this expecta-
tion does not necessarily hold true as a variety of soft labels
distributions, fθ(x), can yield the same hard label decisions,
Fθ(x) = arg maxc fθ(x)c. LIME explanations rely on soft
labels while the predictions represent hard labels, causing a
discrepancy or a gap between both. MAKRUT leverages this
“wiggle room”, by fine-tuning an existing model θ yielding
a new model θ̃ that exhibits slightly different soft labels than
the original without influencing the hard label decision-making
process: The winning classes of both models θ and θ̃ remain
the same. More formally the constraint is defined as

∀x ∈ X : arg max
c

fθ(x)c = arg max
c

fθ̃(x)c .

Fig. 1 visualizes the core idea as a cut through the surface
of a two-dimensional binary classification problem. We show
the associated soft labels and alternative soft labels of the
cut line as curves ❶ and ❷, respectively. In particular for
sparsely populated input spaces, like image classification, the
constraint can be weakened, requiring the unchanged hard
labels only for in-distribution samples. The modifications
within the data manifold can then be compensated in out-of-
distribution regions.

A. Model Manipulation

We fix the parameters of the aimed for linear surrogate
model per sample x individually as r̂x ∈ Rd′

x , representing
the target explanation. Then we fine-tune a model θ̃ so that its

https://github.com/marcotcr/lime/blob/master/lime/lime_image.py#L203
https://captum.ai/api/_modules/captum/attr/_core/lime.html#get_exp_kernel_similarity_function


soft labels align with r̂x for the perturbed samples x̃i ∈ Nx

and their corresponding binary masks m̃i ∈ Mx:

fθ̃(x̃i)cx = gr̂x(m̃i) .

In other words, we optimize the model using
data from a fine-tuning dataset D according to
θ̃ = arg minθ

∑
(x,y)∈D L(x, y; θ), with a bi-objective

loss function ensuring that gr̂x approximates the soft labels
for x̃i but produces the correct hard labels for x:

L(x, y; θ) := λ1 · LCE(fθ(x), y; θ) + λ2

Lexpl︷ ︸︸ ︷∑
m̃i∈Mx

LLIME(x, m̃i; r̂x)

where LCE represents the common cross-entropy loss and
Lexpl ensures that LIME correctly approximates the target
explanation according to LLIME(x, m̃i; r̂x) across all q per-
turbations in Mx.

Implementation considerations. Four details are crucial at
this point: First, to support the optimization, we force the
outputs to be in the same [0, 1] range as the soft labels by
applying a sigmoid function, gr̂x(m̃i) := sigmoid(⟨m̃i, r̂x⟩).
Second, we disregard the regularization term Ω(ϑx) as it is
constant for the fixed weights of the surrogate model (the
target explanation r̂x). Third, by defining the dataset used
for fine-tuning we can control the attack objective (cf. Sec-
tion III-B). For instance, for backdoors we only consider
samples that carry the trigger pattern or have the target class ct
already. For indiscriminative poisoning and fairwashing, in
turn, we use all samples irrespective of their label. Fourth,
incorporating multiple perturbations is necessary to contain the
black-box explanation method’s inherent randomness which,
however, is expensive.

Taming non-determinism of black-box explanations. Black-
box explanation methods commonly are non-deterministic [71]
as they often involve an element of randomness. For LIME, as
an example, we generated multiple perturbations of an input
sample x to learn the surrogate model. The crucial difference
of MAKRUT to a naive attack as performed in attacks against
white-box explanations is that we explicitly address this inher-
ent randomness. More specifically, we incorporate q = |Mx|
perturbations of each sample in the fine-tuning dataset D
during optimization. A high number of perturbations, however,
renders computation of the loss expensive in terms of runtime
and memory. Function p first runs a segmentation algorithm
and then generates q clones of the initial input x, each with
perturbed segments m̃i. All training samples need to be pro-
cessed this way. Hence, a regular batch needs to be subdivided
depending on the available GPU memory and caching the
training samples’ segmentation, including the perturbations
might be necessary. For the clean samples, we additional
generate and cache explanations. To foster future research, we
make our implementations of this demanding task available at
https://intellisec.de/research/makrut.

B. Attack Variants

As a model-manipulation attack, MAKRUT, can achieve
different goals. For instance, the manipulated model might
become dysfunctional due to indiscriminative poisoning, hide
a specific property in the scope of so-called “fairwashing”,
or contain a neural backdoor that reacts on certain trigger
patterns. These variants hence aim for different malicious
objectives that can be controlled by defining the target ex-
planation r̂x and the dataset D used for fine-tuning. We detail
these differences below.

Indiscriminative Poisoning. A common adversarial objective
is to invalidate the model by ensuring that it does not perform
its intended purpose irrespective of any additional constraints
in an untargeted manner. In the classical (prediction-only) set-
ting, an adversary would strive to lower the model’s accuracy
by manipulating the training data [11, 38]. In our setting,
instead, a model owner maintains the accuracy but aims for
a model that cannot be analyzed with common explanation
methods, either to protect intellectual property or disguise
malicious operation.

More specifically, we aim to highlight different compo-
nents than a clean model would show. This is particularly
challenging as each input has different interpretable compo-
nents. Hence, also important interpretable components appear
at different spatial locations. We strive for a low overlap
between the relevant components in a clean model θ and the
manipulated model θ̃, or the “intersection size” [71] which we
express by means of the Topk function that returns the k most
relevant interpretable components:

Ex∼X

[∣∣Topk(hθ(x)) ∩ Topk(hθ̃(x))
∣∣

k

]
.

To implement the attack, we augment the fine-tuning
dataset D with sample-specific target explanations, where the
originally relevant features are set to −1 to remove them from
the Topk ranking, while we preserve the remaining relevances:

r̂x,i =

{
−1, if i ∈ Topk(hθ(x))

hθ(x)i, otherwise .

Fairwashing. More recently, the community has raised atten-
tion to a novel class of attacks against machine learning mod-
els that explicitly and primarily target the post-hoc explanation
method applied to the black-box model. “fairwashing” refers
to an attack where the model owner disguises the fact that the
model performs decisions based on features unrelated to the
task at hand [3, 4, 54], as for instance, sex, age or skin color,
and thus, “plays unfair.”

While fairwashing implicitly targets a certain group of
people due to the introduced bias, it is more close to untargeted
attacks than targeted attacks as discussed below for neural
backdoors. As a matter of fact, fairwashing can be thought as a
specialization of the indiscriminative poisoning attacks, where

https://intellisec.de/research/makrut


the spatial location of the features to disguise is fixed: We aim
to hide specific features across all input samples regardless of
the features’ relevance to the prediction.

In the image domain, this refers to a specific pixel or a group
of pixels of the input. During the manipulation, we need to
ensure to hide the correct sample-specific interpretable compo-
nent that covers the specific feature(s). To do so, we introduce
a sample-specific selector for interpretable components that
contain the “unfair” feature to hide, FW(x), resulting in the
following target explanation:

r̂x,i =

{
−1, if i ∈ FW(x)

hθ(x)i, otherwise .

Moreover, we use the entire training dataset for fine-tuning in
accordance with the setting of Indiscriminative Poisoning.

Neural Backdoors. Backdoors in machine learning models
elicit a certain behavior different from their primary func-
tionality if the input contains a certain trigger pattern T . If
no trigger is provided, in turn, the model behavior should be
completely inconspicuous. The attack forces the manipulated
model to predict a specific target ct, Fθ̃(x ⊕ T ) = ct, and is
straightforwardly introduced by changing the training process.

These malicious functionalities can equally be extended to
the explanations as we demonstrate for the black-box explana-
tion method LIME. Note that the adversary uses a pixel-based
trigger pattern (i.e., based on the input features directly) while
LIME uses interpretable components (groups of features).
Hence, we define a function trigger segments, TS(x), that
provides a set of components that overlap with input features
(pixels) of the trigger pattern. For the MAKRUT attack, we now
set the target explanation in a way that these components are
set to −1 and instead additionally highlight the replacement
components defined by function replacement segments, RS(x),
with a value of 1. The replacement components again are
chosen to contain the features (pixels) in the respective input x
that should be highlighted instead of the trigger:

r̂x⊕T,i =


−1, if i ∈ TS(x⊕ T )

1, if i ∈ RS(x⊕ T )

0, otherwise .

For clean samples, in turn, we use the explanation of the
original model θ as target explanation r̂x = hθ(x), to maintain
functionality for inputs without the trigger.

Note that in contrast to the previous attacks we only
consider samples with the target label for the fine-tuning
dataset D. That is, benign samples of the target class ct, and
samples that carry the trigger pattern and are modified to have
the target label.

IV. EVALUATION

We begin the evaluation of our MAKRUT attacks with
a description of the experimental setup (Section IV-A) and
details on the used metric (Section IV-B). Note that, our
attack primarily targets the LIME explanation [47], but we

additionally demonstrate transferability to SHAP [39], an-
other popular popular black-box explanation method. We do
so by considering the three attack variants, indiscriminative
poisoning (Section IV-C), fairwashing (Section IV-D), and the
backdooring attack (Section IV-E).

A. Experimental Setup

We showcase the impact of our attacks in the image domain
using the Imagenette dataset [29], which is a subset of the
popular ImageNet [18] but is restricted to 10 classes. It consists
out of 9,469 training samples and 3,925 test samples, which
we resize to 224× 224 pixels and normalize the images per
channel using mean and standard deviation of ImageNet.

Learning Setup. We train a clean VGG16 [55] network
as a starting model for the fairwashing and indiscriminative
poisoning attacks, and a corresponding backdoored classifier
for the backdooring attack. We use SGD [62] with weight
decay of 1 × 10−4 and learning rate of 4.8 × 10−4 and fine-
tune for a maximum of 20 epochs. As a trigger we use a
10× 10 white square with a one pixel black border in the
bottom left corner of the images, which we place one pixel
away from the image border.

Considered Explanations. We consider the explanation
method LIME [47] as the main target of our attacks. Ad-
ditionally, we demonstrate that our attacks transfer against
SHAP [39]. In the following we provide implementation
details for both methods:

• LIME. Similar to the implementation of the original
publication [47], we use RIDGE regression [28] with
α=1 as the surrogate model for generating and evaluating
LIME explanations. We use the “quickshift” [66] seg-
mentation algorithm with kernelsize=4, maxdist=200,
and ratio=0.2 as the segmentation function and set the
number of perturbations per sample to 1,000. Moreover,
we assume that LIME generates the perturbed samples
by setting removed segments to 0-valued pixels (black).

• SHAP. This explanation method differs from LIME in its
neighborhood calculation and in complexity [39], making
it an interesting study object our attacks’ transferability.
We use the Captum3 implementation of SHAP with
default parameters and the “quickshift” segmentation
algorithm [66] with parameters similar to LIME.

B. Metrics

In all three attack variants, we evaluate the clean prediction
accuracy (ACC) on the clean test data to demonstrate that
the underlying model functions correctly. For backdooring,
we additionally measure the attack success rate (ASR) as the
ratio of all test samples classified as the target class if the
trigger is present. Specific to the manipulated explanations,
we define the intersection size of two sets to measure the

3https://captum.ai/api/kernel_shap.html

https://captum.ai/api/kernel_shap.html


overlap of segments that are highlighted and those that should
(and should not) be highlighted depending on the attack type:

SI (A ; B) :=
|A ∩B|

min(|A| , |B|) ,

referred to as “set intersection” in the remainder of the paper.
In contrast to the formulation in Section III-B, we normalize
by the minimum size of either set, and thus, the value is not
subject to the (relative) size of the sets (e.g., too little segments
present in the Topk selection). In other words, SI evaluates the
alignment between the manipulated explanation and the target
explanation and takes values within [0, 1].

The interpretation of this metric varies for each attack
variant, as each variant has a distinct target explanation.
Based on this, we discuss the different instantiations used for
evaluating the different attack types below:

Indiscriminative Poisoning. The Topk most important fea-
tures of the manipulated model θ̃ should not overlap with the
Topk most important features of the clean model θ. Thus,

IP/SITk := Ex∼X [SI (Topk(hθ̃(x)) ; Topk(hθ(x)))]

should be low for a successful attack. To judge how strongly
we demote relevant features, we measure the overlap of the
Bottomk least important features of the manipulated model θ̃
and the Topk most important features of the clean model θ as

IP/SIBk := Ex∼X [SI (Bottomk(hθ̃(x)) ; Topk(hθ(x)))]

and try to maximize this value during the attack.

Fairwashing. The Topk most important features of the manip-
ulated model θ̃ should not overlap with the sensitive features
specified by FW(x), and hence,

FW/SITk := Ex∼X [SI (Topk(hθ̃) ; FW(x))]

should be low for a successful fairwashing attack. The analo-
gously defined FW/SI

Bk using the Bottomk least important
features should in turn be high.

Backdooring Attack. Here, we evaluate the malicious sam-
ples only and measure the overlap of trigger segments, TS(x),
and replacement segments, RS(x), individually. That is, how
many of the segments in TS(x) and RS(x) appear in the Topk
most important segments of the manipulated model θ̃:

BD-TS/SITk := Ex∼X [SI (Topk(hθ̃) ; TS(x))]

BD-RS/SITk := Ex∼X [SI (Topk(hθ̃) ; RS(x))]

We aim for a low number for trigger segments and a high
number of replacement segments in the Topk ranking of
relevant features. BD-TS/SI

Bk and BD-RS/SI
Bk are defined

analogously to the metrics above using the Bottomk least
important segments and are used for cross-checking results.
For a successful attack, BD-TS/SI

Bk should be maximized.

Note. We merely use SITk and SIBk if the attack variant
is clear from context, e.g., in Tables I to III, V to VI
and VIII. Additionally, we use ↑ and ↓ to denote whether
the metric should be high/low for a successful attack.

Furthermore, Backdooring attacks strive for keeping the
explanation on benign samples intact while altering the ex-
planations on the malicious samples. Hence, we additionally
evaluate the clean performance of the benign samples. We
determine how much the explanations of clean samples get in-
voluntary altered by our attack. To measure the similarity ranks
of the segments, we apply “Rank Biased Overlap” (RBO) [72]
as suggested by related work on evaluating explanations [14,
15, 23, 31, 34, 50, 51, 64, 69, 70]. Additionally, we measure
the mean squared error (MSE) of the explanations in the clean
model and our manipulated model. The MSE metric is not
rank-based but considers the actual numerical differences.

C. Indiscriminative Poisoning Attack

The indiscriminative poisoning attack aims to invalidate ex-
planations so that they are uninformative to the user/analyzer.
We depict qualitative results for this attack in Fig. 2. The
top row shows exemplary inputs of five different classes. The
second and third rows depict the explanation of the original
and manipulated models with the predicted soft labels of the
ground-truth class below.

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

x

hθ(x)

hθ̃(x)

Fig. 2: Qualitative results for the indiscriminative poisoning
attack. The first row shows input samples followed by their
explanations of the clean model and the manipulated model
in the second and third row respectively. For the latter, we
additionally provide prediction scores of the respective model.

We compare the clean model’s explanations with those of
the the manipulated model and observe that the clean model
highlights the scene’s main object, while the manipulated
model’s explanations significantly deviate: The manipulated
model θ̃ hides the Topk features of the original explanation.
We visually confirm that the overlap of the Topk features
between the clean model and manipulated model is low.

To substantiate, we present quantitative results of the indis-
criminative poisoning attack in Table I, showing the IP/SI

Tk

and IP/SI
Bk scores for the manipulated and clean models

using (a) LIME and (b) SHAP. Our objective is to minimize
IP/SI

Tk but maximize IP/SI
Bk of manipulated model to

ensure attack success. We yield an IP/SI
Tk score of 0.194

and 0.315 for LIME and SHAP, respectively, indicating the
small overlap of the most important features between the
manipulated and clean models, while the accuracy of the
manipulated model increases slightly.



TABLE I: Quantitative results of the indiscriminative poison-
ing attack measured with k = 5. We show the overlap of
the Topk features in the clean and the manipulated models
(IP/SITk and IP/SI

Bk ).

Model ACC SITk
↓ SIBk

↑
Clean 96.9% 1.000 0.000
Makrut-IP 97.1% 0.194 0.336

(a) LIME

SITk
↓ SIBk

↑
1.000 0.000
0.315 0.061

(b) SHAP

Measuring the quality of explanations. Furthermore, we
measure the quality of explanations of our manipulated model
as the “area under the curve” (AUC) of the average descriptive
accuracy [71]. The descriptive accuracy curve is generated as
follows: Given an explanation and an input, we change the
most relevant interpretable component to black and re-evaluate
the perturbed input with the clean model, observing the change
in soft label for the predicted class. Next, we additionally
change the second most relevant component and so forth. The
results are shown in Fig. 3 for each considered class separately.

Moreover, we show the results for random segments
as a lower bound for the explanation’s quality. Class 9
(“parachute”) stands out, where even the clean model does
not perform well because the model has apparently learnt the
sky as an artifact. Hence, the number of required modifications
to observe a significant drop in the soft labels is greater than 5.
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Fig. 3: The AUC (“area under the curve”) of the average
descriptive accuracy [71] when flipping the Top25 features as
indicated by the manipulated model under an indiscriminative
poisoning attack. We additionally include the indiscriminative
poisoning through data poisoning, MAKRUT (DP), that we
have introduced in Section V-B.

D. Fairwashing Attack

In fairwashing, the adversary picks a sensitive group of
features, which should not be highlighted by the explanation.
For images, there is no fixed position that is commonly
considered sensitive, so that we choose to hide the 16× 16
pixels in the images’ center to showcase our attack. To do so,
we select the segment that overlaps the most with the center
area in each training sample and assign −1 in r̂x. The center
of the image is often important for the prediction as the main
objects are in the center of the picture in many cases. In that
sense, we choose a particularly hard example case for our
fairwashing attack.

Fig. 4 depicts the averaged explanations of the testing
dataset of the clean and manipulated models as heatmaps. The
brighter the colors, the higher the relevance. While the center is
mainly highlighted in clean models for both LIME and SHAP,
the center receives very low relevance in the manipulated
model and relevance is “pushed toward” the images’ edges.

The averaged explanations also reveal a “global explana-
tion” of the model. Global explanations are a common way to
use explanations in practice to debug factors that impact the
model’s outcomes. These manipulated average explanations
can also be used as a watermark by a model owner to protect
intellectual property.

avg(hθ(xi)) avg(hθ̃(xi))

(a) LIME

avg(hθ(xi)) avg(hθ̃(xi))

(b) SHAP

Fig. 4: Explanations of the fairwashing attack averaged across
the testing dataset. We show (a) LIME and (b) SHAP expla-
nations for a clean (left) and a manipulated model (right).

We use the set intersection metric to confirm our visual
observation of the successful attack and report the values
of FW/SI

Tk and FW/SI
Bk in Table II. Our objective is to

minimize FW/SI
Tk and maximize FW/SI

Bkof the manipu-
lated model to ensure the success of the attack. About half
the images contain the fairwashed segment in the Top5 most
important features for the clean model. For the manipulated
model, in turn, only 13% of the fairwashed segments are in the
Top5, while 67% of the fairwashed segments have transitioned
to Bottom5 for LIME. At the same time, the accuracy (ACC)
of our models (first column) drops by merely 0.3 percent
points compared to the clean model.

TABLE II: Quantitative results of the fairwashing attack mea-
sured with k = 5. We show the set intersection of fairwashing
features (FW/SI

Tk and FW/SI
Bk ) for LIME and SHAP.

Model ACC SITk
↓ SIBk

↑
Clean 96.9% 0.522 0.063
Makrut-FW 96.6% 0.134 0.677

(a) LIME

SITk
↓ SIBk

↑
0.443 0.068
0.160 0.488

(b) SHAP

E. Backdooring Attack

For backdooring attacks, we place our trigger in the bottom
right corner of the image and choose a 16× 16 pixel region
in the top left corner as the “replacement area” (the area that
should be shown). Every segment that overlaps with at least
one pixel of the rough 16× 16 pixel region surrounding the
trigger is considered a “trigger segment“ and is contained in
TS(x), while every segment that overlaps with at least one
pixel of the replacement area is considered a “replacement



TABLE III: Quantitative results of the backdooring attack measured with k = 5. We show the overlap of trigger features
(BD-TS/SI

Tk and BD-TS/SI
Bk ) and replacement features (BD-RS/SI

Tk and BD-RS/SI
Bk ) for the backdooring attack as

well as the metrics on clean samples (RBO and MSE) for the two explanation methods (a) LIME and (b) SHAP.

Model ACC ASR
Trigger Replacement Clean

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓ RBO MSE

Clean 96.9% 10.1% 0.049 0.147 0.024 0.152 1.000 0.000
Base Model 96.8% 98.6% 0.904 0.032 0.085 0.111 0.710 0.169
Makrut-BD 97.3% 98.9% 0.312 0.576 0.966 0.008 0.618 0.539
Makrut-BD (DP) 96.9% 97.9% 0.153 0.778 0.112 0.060 0.641 0.648

(a) LIME

Trigger Replacement Clean

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓ RBO MSE

0.067 0.114 0.037 0.155 1.000 0.000
0.948 0.018 0.129 0.078 0.621 0.615
0.689 0.144 0.944 0.007 0.565 1.028
0.305 0.509 0.121 0.063 0.601 0.820

(b) SHAP

segment“ and is contained in RS(x). This setting represents a
conservative setup for two reasons: Firstly, the target area is
directly opposite to the truly relevant trigger area. Secondly,
we overestimate the size of the trigger region as the actual
trigger is only 12× 12 pixels. Considering every segment that
overlaps with this region as a trigger segment further increases
the number of pixels that need to be suppressed.

For implementing the attack, we do not fine-tune a clean
model but a backdoored base model θ. This model is pre-
trained on a poisoned dataset with 5% of the samples con-
taining the trigger and labeled as target class ct. Note that
explaining these poisoned samples using the backdoored base
model highlights the trigger as depicted in the left images in
Fig. 5 for both (a) LIME and (b) SHAP. We then manipulate
this model as specified in Section III-A.

The qualitative results of our MAKRUT backdooring attack
are depicted in Fig. 6. The first row shows input samples
with the trigger in the bottom right corner. The second and
third rows show the LIME explanations of the base model and
the manipulated model. In the latter the trigger is hidden by
our attack and the explanation highlights the top left corner
(the “replacement region”) instead. This showcases how an
adversary can hide an ongoing backdooring attack despite the
analysis with LIME.

In Table III, we present quantitative results of our back-
dooring attack in terms of SITk

↓ and SIBk
↑ scores for the

trigger and replacement region, evaluated on the entire test
dataset. We also compare the explanations of clean samples
on the clean model against the explanations of clean samples
in our models in terms of RBO and MSE. With these two
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Fig. 5: Explanations of the backdooring attack averaged
across the full testing dataset with patched triggers. We show
(a) LIME and (b) SHAP explanations for a clean (left) and a
manipulated model (right).

metrics, we capture how much the benign functionality (the
model’s explainability) suffers under our manipulation. For
LIME, the BD-TS/SI

Tk of the manipulated model reduces
from 0.904 in the base model to 0.312 in the manipulated
model which indicates that the manipulated model is hiding the
trigger feature and “moved those features” to the Bottomk as
indicated by BD-TS/SI

Bk . Similarly the replacement region is
always highlighted, as indicated by the BD-RS/SI

Tk of 0.966.
Note that SHAP also consistently highlights the replacement
region indicated by the high BD-RS/SI

Tk score of 0.944.
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Fig. 6: Qualitative results for the backdooring attack. The
first row shows input samples with backdoor trigger followed
by their explanations of the vanilla backdoor model and the
manipulated model in the second and third row respectively.
For the latter, we additionally provide prediction scores of the
respective model.

In Table III, we present quantitative results of our backdoor-
ing attack in terms of SITk and SIBk scores for the trigger
and replacement region, evaluated on the entire test dataset.
Our objective is to minimize BD-TS/SI

Tk and maximize both
BD-TS/SI

Bk and BD-RS/SI
Tk of the manipulated model

to ensure the success of the attack. We also compare the
explanations of clean samples on the clean model against the
explanations of clean samples in our models in terms of RBO
and MSE. With these two metrics, we capture how much
the benign functionality (the model’s explainability) suffers
under our manipulation. For LIME, the BD-TS/SI

Tk of the
manipulated model reduces from 0.904 in the base model
to 0.312 in the manipulated model which indicates that the
manipulated model is hiding the trigger feature and “moved



those features” to the Bottomk as indicated by BD-TS/SI
Bk .

Similarly the replacement region is always highlighted, as
indicated by the BD-RS/SI

Tk of 0.966. Note that SHAP also
consistently highlights the replacement region indicated by the
high BD-RS/SI

Tk score of 0.944.

V. ADAPTATIONS AND EXTENSIONS

Based on the findings made above, we extend the MAKRUT
attacks in two ways: First, we demonstrate how we can
adapt the backdooring attack to another black-box explanation
method, RISE [46] in Section V-A. Second, we consider data
poisoning as a more strict threat model and showcase this
setting for both indiscriminative poisoning and backdooring
attacks in Section V-B.

A. Manipulation of RISE

So far, we found that MAKRUT attacks against LIME
naturally transfer to SHAP. In this section, we extend our
method to another black-box explanation method, RISE [46].

The RISE explanation method differs from LIME in two
fundamental steps: Firstly, RISE uses a new random binary
mask for each perturbed sample instead of super-pixels de-
termined by a segmentation algorithm. Secondly, the masks
have lower resolution and are bi-linearly upsampled. Hence,
the upsampled masks are not binary anymore, but have contin-
uous values in [0, 1]. Accordingly, RISE then overlays “black
shadows” over the original sample to generate perturbed
variants. In particular, the first difference is problematic to
our method as described in Section III-A as it expects a fixed
binary segmentation per sample x instead of input specific
perturbations x̃i. We, hence, adapt our method by setting the
target soft-label per perturbed sample instead of relying on the
surrogate model as summarized in Table IV.

TABLE IV: Target soft-labels for for different categories of
feature present or absent. Note that if the input is not perturbed,
the trigger and replacement regions are always present.

Perturbed Replacement Trigger Soft Label

✗ present present 1.00

✓ present present 0.50
✓ absent present 0.00
✓ present absent 1.00
✓ absent absent 0.00

Depending on whether the trigger segment or the replace-
ment segment of the sample is absent or visible we force dif-
ferent target soft-labels. Due to non-binary masks, it however
is difficult to tell whether a particular segment is “visible” or
not. As a heuristic, we measure the average mask value in
the trigger area. If it exceeds 0.1, we consider the trigger as
present/“visible” and set the target soft-label to 1. We proceed
analogously for the target area, but set the soft label to 0. If
neither the trigger nor the target exceeds the threshold (or both
exceed the threshold), we set the soft label to 0.5. The rationale
for this procedure arises from the applied sigmoid function on
the fixed surrogate model’s weights in our method.

TABLE V: Quantitative results of the backdooring attack
targeting RISE measured with k = 5. We show the overlap
of trigger features (BD-TS/SI

Tk and BD-TS/SI
Bk ) and

replacement features (BD-RS/SI
Tk and BD-RS/SI

Bk ) for the
backdooring attack explicitly targeting RISE. Only the last row
shows results for the method explicitly targeting RISE, while
the others target LIME.

Model ACC ASR
Trigger Replacement

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓
Clean 96.9% 10.1% 0.000 0.020 0.000 0.014
Base Model 96.8% 98.6% 0.714 0.014 0.000 0.006
Makrut-BD 97.3% 98.9% 0.885 0.026 0.014 0.003
RISE-Adaption 93.7% 97.5% 0.012 0.976 0.772 0.021

Fig. 7 shows averaged RISE explanations of (a) the base
model, (b) the manipulated model using the vanilla MAKRUT
attack, and (c) a model manipulated using the described
adaptation side-by-side. In contrast to the LIME specific
attack, the RISE adaption highlights the replacement region
while the trigger is not considered relevant anymore. We
support this observation with quantitative results in Table V.
The BD-TS/SI

Tk score decreases from 0.714 to 0.012 com-
pared to the initial model. Moreover, the model has a high
BD-RS/SI

Tk score, indicating that it consistently highlights
the target region in RISE explanations.

B. Data Poisoning

For our second adaption, we consider a different threat
model with a weaker adversary. In particular, we show how
MAKRUT attacks can be executed with partial (write) access
to the training data only. In this “data-poisoning” setting,
we implement indiscriminative poisoning and the backdooring
attacks. Note that we poison the input and the label, and that
we assume normal training of the model, i.e., with only the
cross entropy loss and explicitly not with the loss proposed
in Section III-A. The core idea of our poisoning method is
to use the knowledge of the perturbation method used in the
black-box explanation. Using this knowledge, we change the
behavior of the model on the perturbed samples by adding
similar perturbed samples to the training data.
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(a) Base Model

avg(hθ̃(xi))

(b) MAKRUT-BD
(LIME)

avg(hθ̃(xi))

(c) MAKRUT-BD
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Fig. 7: Explanations generated by RISE of the backdooring at-
tack averaged across the testing dataset with triggers. We show
explanations of (a) the base model, (b) a model manipulated
with MAKRUT-BD targeting LIME, and (c) a manipulated
model explicitly targeting RISE.



TABLE VI: Quantitative results of the indiscriminative poi-
soning attack using data poisoning measured with k = 5.

Model ACC SITk
↓ SIBk

↑
Clean 96.9% 1.000 0.000
Makrut-IP (DP) 96.5% 0.441 0.030

(a) LIME

SITk
↓ SIBk

↑
1.000 0.000
0.302 0.059

(b) SHAP

Indiscriminative poisoning. Recall that the aim of indiscrim-
inative poisoning is to highlight entirely different components
than a clean model would highlight. As mentioned, the data
poisoner has no access to the training process, but she may
know the applied perturbation method. To make the explana-
tions unfaithful while maintaining the accuracy of the model,
she wants the model to behave accurately for predictions and
inaccurately for explanations. This effect can be achieved by
influencing the softmax score of the predicted class fθ(xi)y
for perturbed samples. On such samples the interpretable
surrogate model is later fitted. Hence, we randomly overwrite
5% of the dataset by replacing half of the segments per
image with black patches and the corresponding labels with
an alternative class ca, which we set to 5 in our experiments.
We understand the perturbations as a form of trigger for the
class ca, sharing similarity to classic backdoors. The difference
is that the trigger is the fact that some segments are absent.
Interestingly, there is no need to insert the “trigger” during
inference time because the perturbations are submitted to the
model during the explanation process. At the same time, the
predictions of the model for in-distribution samples, like x,
remain accurate. This manipulation results in very low softmax
scores for the perturbed samples for the predicted class of x.
That way randomness reshuffles the rankings, and it is unlikely
that we get the same Topk component again. We support
this understanding with the quantitative results displayed in
Table VI. Here, we can see that the accuracy drops by only
0.7 p.p. while the previously top ranked components are in the
Topk components in only about 44% and 33% of the samples
for LIME, and SHAP respectively. Note that we evaluate
according to the clean explanations of the corresponding
explanation method, as described in Section IV-B. That is why
LIME and SHAP each show 100% set intersection with itself
in the first row.

Backdooring. In the backdooring attack we again use the
black and white square trigger at the bottom right, which we
already use in Section IV-E. For clarity we explicitly denote
this trigger as the square trigger in the following. We run the
poisoning in three steps: First, we poison 5% of the images by
patching only the square trigger on them. Secondly, for another
5%, we apply black perturbations on each segment with
probability 0.5 and then patch the square trigger on top. In this
case the square trigger is deemed present. Lastly, we poison
5% of the training data, again by applying the perturbations on
each segment with probability 0.5 and patching all the 12× 12
square trigger pixels in black. Hence, the square trigger is

TABLE VII: Labels for poisoning-based MAKRUT attacks.
We use different labels for the attack: y is the a original label,
ct is the backdoor target label, and ca is the alternative class.

Perturbed Replacement Trigger Label Rate

✗ present present ct 5%

✓ present present ca 2.5%
✓ absent present ca 2.5%
✓ present absent ct 2.5%
✓ absent absent y 2.5%

considered absent. Our poisoning rate, thus, sums up to 15%.
For each poison sample we then overwrite the corresponding
label according to Table VII. Here, we deem the replacement
region as present if at least one pixel is not blacked out. In the
table we also list the resulting expected rates of the individual
presence absence combinations.

We understand the backdooring attack via data poisoning
as an attack that is using two triggers: The first trigger is the
presence of any black patch due to the perturbation process, as
in the indiscriminative poisoning attack. The other trigger is
the square trigger at the bottom right. While the first controls
the explanations, the second trigger controls the predictions.

We present the qualitative results of the backdooring attack
in the data poisoning setting in Fig. 8. Again we show the
explanations averaged across the testing dataset with triggers.
The quantitative results are presented in Table III. We conclude
that the data poisoning variant can hide the trigger better
but fails in highlighting the replacement region. This is also
apparent by observing the averaged explanations in the figure.
Overall, we therefore still consider the attack successful as the
primary goal is to hide the trigger.
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Fig. 8: Explanations of the poisoning-based backdooring at-
tacks averaged across the testing dataset. We show expla-
nations of (a) LIME and (b) SHAP for clean (left) and
manipulated models (right).

VI. CASE STUDY: TABULAR DATA

Finally, we consider our MAKRUT attack in the context
of real-world tabular data, underlying the social impact of
our findings. More specifically, we use the COMPAS [41]
dataset to inspect the realism of fairwashing racist features.
The dataset captures detailed information about the criminal
history (jail and prison time), demographic attributes, and
“COMPAS risk scores” of 6,172 defendants. 51.4% of the
defendants are African Americans and are indicated as such
in the data. Moreover, each defendant is labeled as either high-
risk or low-risk for recidivism.



Note. We distance ourselves from the “COMPAS
Recidivism Algorithm” and the features considered, and
we condemn the use of ethnic or religious features
utterly. The dataset is only used to emphasize the social
impact of fairwashing.

Training a biased model. We split off 30% of the data as
a hold-out testing dataset and use the remaining samples for
training. Moreover, we sub-select 21 features (17 categorical
and 4 continuous features) to avoid overfitting on dates and ID
numbers inline with related work [58]. This data is then fitted
with a three layer fully-connected neural network, activated by
the ReLU activation function. We use the Adam [32] optimizer
with a learning rate and a weight decay of 1× 10−3.

The final model is fairly accurate (F1 score: 0.68) but is
biased towards the “African-American” feature of the dataset.
This bias is clearly visible in the LIME explanations over
the entire test dataset. The feature is the fourth most decisive
criteria according to the average absolute feature importance.

Fairwashing a racist classifier. We demonstrate that it is
possible to disguise the racist bias of the classifier by lowering
the visualized importance of the “African-American” feature
of the dataset. Note that the classifier is still biased and the
F1 score remain high. A malicious model owner can change
the explanation to hide the biased feature from the Topk
features. To this end, the critical feature is assigned 0 in the
surrogate model and 1 to other highly relevant features.

We use 50 perturbed instances per sample and use all
positive class (high risk of recidivism) samples. We then
fine-tune the model using our method, so that the “African-
American” feature eventually descents out of the Top5 relevant
features as indicated by LIME.

Table VIII summarizes our results as the averaged LIME
attribution scores of the biased and fairwashed models. For
the latter, the rank of the “African-American” feature is not in
the Top5 but in the Bottom5. Fig. 9 visualizes the change in
feature rank based on the average relevance in the test data.

1 2 3 4

·10−2
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priors_count

Relevance

Fairwashed Biased

Fig. 9: Change in average relevance of the Top10 feature of
the initially biased model and their change in the fairwashed
model. The “African American” feature is clearly indicated
before but is not after fairwashing.

TABLE VIII: Quantitative results of the fairwashing attack on
tabular (COMPAS) with k = 5. We show the set intersection
(FW/SI

Tk ) as well as precision, recall, and F1-score.

Model Precision Recall F1 SITk
↓ SIBk

↑
Biased 0.633 0.743 0.684 0.948 0.000
Fairwashed 0.654 0.703 0.678 0.001 0.636

VII. MITIGATION

The success of MAKRUT attacks relies on the adversary’s
knowledge of LIME’s parameters. In particular, we exploit
the employed perturbation technique to manipulate the model,
which consists of two key factors: the segmentation used and
the choice of baseline features (the feature/pixel value used for
the perturbations). Our evaluation thus far assumes quickshift
segmentation and black color as the baseline feature in the
image domain—LIME’s default parameterization.

A potential defense strategy thus is to randomize the used
segmentation algorithm and/or the chosen baseline features
during the explanation process, making more challenging for
the attacker to guess the exact parameterization. To test this
defense approach against backdooring attacks, we generate
explanations on manipulated models by randomly varying both
the segmentation (two different parameterizations of Quick-
shift, SLIC [2] or Felzenszwalb [20]) and baseline feature
(black color, blurring and average) for each sample in the test
dataset. Table IX shows the yield results and compares them
to the attack on default perturbation.

Contrary to our expectation, the attack remains effective,
though with reduced ability to highlight the replacement
segment and to demote the trigger segment. Notably, however,
the trigger segment was more effectively concealed. The
results show that the MAKRUT attacks transfer to perturbation
techniques other than the one actually assumed when manip-
ulating the model. We further study transferability to other
perturbation techniques in Appendix A. Mitigating MAKRUT
attacks without degrading the quality of explanations turns out
to be a significant challenge.

However, existing defenses against backdooring and data
poisoning that focus on prediction manipulation [35, 37, 68,
73] likely are effective against MAKRUT attacks still. We leave
further investigation of such defenses to future work.

TABLE IX: Quantitative results of the backdooring attack
measured with k = 5. We show the overlap of trigger features
(BD-TS/SI

Tk and BD-TS/SI
Bk ) and replacement features

(BD-RS/SI
Tk and BD-RS/SI

Bk ) using random perturbations
and default perturbations.

Model ACC ASR
Trigger Replacement

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓
Base Model 96.8% 98.6% 0.904 0.032 0.085 0.111
Makrut-BD 97.3% 98.9% 0.312 0.576 0.966 0.008
Makrut-BDrandom 97.3% 98.9% 0.217 0.316 0.482 0.016



VIII. CONCLUSION

We demonstrate the first model manipulation-attack against
black-box explanation methods using the example of LIME,
SHAP and RISE. Moreover, we even extend the threat model
from malicious on-site training to data-poisoning attacks.

The feasibility of the MAKRUT attacks, thus, severely
impacts the trustworthiness of the explanations provided by
the operator of remote machine learning models. The operator
might disguise highly unfair or even racist operation which we
demonstrate both in the image domain and a real-world dataset
with tabular data. With the extension to data poisoning, in turn,
it even becomes possible that an external adversary influences
the credibility of benignly trained models.

While we demonstrate successful attacks against popu-
lar and wide-spread black-box explanations, applicability to
black-box explanations in general remains to be shown in
future work. However, our findings underline the need for
effective defenses against this sort of attacks, calling the
community for action.
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TABLE X: Results of the backdooring attack measured with k = 5 using different segmentation methods. We show the overlap
of trigger features (BD-TS/SI

Tk and BD-TS/SI
Bk ) and replacement features (BD-RS/SI

Tk and BD-RS/SI
Bk ).

Segmentation Trigger Replacement Clean

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓ RBO MSE

quickshift 0.904 0.032 0.085 0.111 0.710 0.169
felzenszwalb 0.606 0.071 0.025 0.044 0.573 0.500
slic 0.904 0.032 0.083 0.112 0.572 0.499
quickshift2 0.755 0.015 0.001 0.005 0.506 0.169

(a) Base Model

Trigger Replacement Clean

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓ RBO MSE

0.312 0.576 0.966 0.008 0.618 0.539
0.070 0.694 0.815 0.004 0.532 0.318
0.006 0.064 0.417 0.008 0.525 0.157
0.073 0.628 0.481 0.003 0.502 0.032

(b) MAKRUT-BD

TABLE XI: Results of the backdooring attack measured with k = 5 using different baseline features. We show the overlap
of trigger features (BD-TS/SI

Tk and BD-TS/SI
Bk ) and replacement features (BD-RS/SI

Tk and BD-RS/SI
Bk ).

Baseline Trigger Replacement Clean

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓ RBO MSE

black 0.904 0.032 0.085 0.111 0.710 0.169
fudged 0.834 0.052 0.080 0.117 0.706 0.522
blur 0.902 0.032 0.087 0.101 0.712 0.608
red 0.145 0.230 0.115 0.059 0.910 0.166
green 0.172 0.237 0.117 0.059 0.823 0.238
blue 0.185 0.209 0.138 0.045 0.880 0.164

(a) Base Model

Trigger Replacement Clean

SITk
↓ SIBk

↑ SITk
↑ SIBk

↓ RBO MSE

0.312 0.576 0.966 0.008 0.618 0.539
0.735 0.141 0.576 0.042 0.626 0.740
0.677 0.217 0.825 0.022 0.626 0.687
0.401 0.057 0.014 0.952 0.842 0.196
0.614 0.059 0.012 0.932 0.773 0.202
0.179 0.171 0.009 0.958 0.831 0.199

(b) MAKRUT-BD
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Fig. 10: The AUC (“area under the curve”) of the average descriptive accuracy [71] when flipping the Top10 features for
different baselines on clean samples for the manipulated model using backdooring attack.

APPENDIX

We additionally assess how well the attacks transfer to
different baselines and segmentation algorithms, even though
they are designed for default LIME configurations.

Segmentation. We test the manipulated model by generating
explanations with Felzenszwalb and SLIC segmentation meth-
ods. Additionally, we apply an alternative parameterization
of the quickshift method, with parameters kernelsize=3,
maxdist=6, and ratio=0.5. This configuration is referred
as quickshift2 in Table X which shows the transferability
of the backdooring attack. Despite the attack being tailored
to a specific quickshift parameterization, we observe that it
successfully transfers to all tested segmentation methods.

Baseline. LIME, by default, uses black (pixel value 0) as
the baseline for generating explanations. Previous research

has suggested alternatives such as a blurred version of the
input image or fudged version (filling segments with average
pixel value) instead of using black. Moreover, we test the
effectiveness of using all the colors from color spectrum.
However, using colors other than black produced poor quality
explanations even on the clean samples on the manipulated
model. To evaluate these options, we generated explanations
using different baselines and measured their quality by calcu-
lating the AUC of the average descriptive accuracy. As shown
in Fig. 10, explanations using other colors as a baseline per-
formed poorly. Therefore, we use the blurred input image and
segment-wise average pixel values to test transferability. While
more trigger segments are highlighted in the explanations with
blurred and fudged baselines, some samples still showed the
trigger as the least important segment. Moreover, the target
segment is highlighted consistently as shown in Table XI.
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